高中数学教师竞赛作品《余弦定理》课件-新人教版必修5

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

余弦定理1、向量的数量积:cosbaba2、勾股定理:AaBCbc222cba证明:CBACAB))((CBACCBACABABCBCBCBACACAC2222CBACAB222abc思考题:若ABC为任意三角形,已知角C,BC=a,CA=b,求AB边c.ABCabcCBACAB))((CBACCBACABABCBCBCBACACAC22)180cos(2220CBCCBACACAB解:Cabbaccos2222定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。Cabbaccos2222Abccbacos2222Baccabcos2222bcacbA2cos222bcbcaB2cos222abcbaC2cos222余弦定理可以解决以下两类有关三角形的问题:(1)已知三边求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角。ABCabc余弦定理证明:以CB所在的直线为X轴,过C点垂直于CB的直线为Y轴,建立如图所示的坐标系,则A、B、C三点的坐标分别为:)0,0(),0,(),sin,cos(CaBCbCbACabbaCbaCabCbCbCbaABcos2sincos2cos)0sin()cos(2222222222Cabbaccos2222余弦定理证明:以CB所在的直线为X轴,过C点垂直于CB的直线为Y轴,建立如图所示的坐标系,则A、B、C三点的坐标分别为:)0,0(),0,(),sin,cos(CaBCbCbACabbaCbaCabCbCbaCbABcos2sincos2cos)0sin()cos(2222222222Cabbaccos2222余弦定理ABCabcD当角C为锐角时证明:过A作ADCB交CB于D在Rt中ADCCACCDCACADcos,sin在中CACCBCBACCACCACCBCBCACCDCBCACBDADABcos2coscos2sin)()sin(222222222222Cabbaccos2222RtABD余弦定理当角C为钝角时证明:过A作ADCB交BC的延长线于D在Rt中ACDCACCACCDCACCACADcos)180cos(sin)180sin(在中CACCBCBACCACCACCBCBCACCDCBCACBDADABcos2coscos2sin)()sin(222222222222Cabbaccos2222bAacCBDRtABD例.已知b=8,c=3,A=600求a.∵a2=b2+c2-2bccosA=64+9-2×8×3cos600=49定理的应用解:a=7变式练习:1.已知:a=7,b=8,c=3,求A.2.已知:a=7,b=8,c=3,试判断此三角形的形状.课堂小结:1、定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。2、余弦定理可以解决以下两类有关三角形的问题:(1)已知三边求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角。

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功