1、什么是计量经济学?计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。2、为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。(同一)3、建立与应用计量经济学模型的主要步骤。①理论模型的建立;②收集数据,参数估计;③模型检验;④模型应用;4、并说明时间序列数据和横截面数据有和异同?时间序列:同一个统计指标,在同一时间点上,不同的对象所得的数据;横截面积:同一指标,同一对象在不同时间点上所得的数据5、试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。6、常用的样本数据有哪些?(同第四题)1、最基础的:经典单方程计量经济学模型;2、运用最小二乘法,3、最基本假定:简单线性回归;对随机扰动项的假定:①零均值;②同方差;③无自相关4、统计检验:一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度5、后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。6、总体回归函数是对总体变量间关系的定量表述7、样本估计量优劣的最主要的衡量准则:无偏性、有效性与一致性8、Goss-markov定理表明OLS估计量是最佳线性无偏估计量。9、运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。10、总体回归函数:将总体被解释变量Y的条件均值表现为解释变量X的某种函数11、样本回归函数(SRF):将被解释变量Y的样本条件均值表示为解释变量X的某种函数。总体回归函数与样本回归函数的区别与联系12、随机扰动项:被解释变量实际值与条件均值的偏差,代表排除在模型以外的所有因素对Y的影响。13、引入随机扰动项的原因:未知影响因素的代表●无法取得数据的已知影响因素的代表●众多细小影响因素的综合代表●模型的设定误差●变量的观测误差●变量内在随机性14、为什么要作基本假定:模型中有随机扰动,估计的参数是随机变量,只有对随机扰动的分布作出假定,才能确定所估计参数的分布性质,也才可能进行假设检验和区间估计●只有具备一定的假定条件,所作出的估计才具有较好的统计性质15、拟合优度:样本回归线对样本观测数据拟合的优劣程度,16、可决系数:在总变差分解基础上确定的,模型解释了的变差在总变差中的比重1、多元线性回归模型基本假定:①零均值;②同方差;③无自相关;④不存在相关性2、在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。1、异方差:模型随机扰动项的方差不同时产生的一类现象。2、在异方差存在的情况下,OLS估计尽管是无偏、一致的(但方差变大,不具有有效性,使重要的解释变量被排除在外),但通常的假设检验却不再可靠,这时仍采用通常的t检验和F检验,则有可能导致出现错误的结论。同样地,由于随机项异方差的存在而导致的参数估计值的标准差的偏误,也会使采用模型的预测变得无效。3、对模型的异方差性有若干种检测方法,如图示法、Park与Gleiser检验法、Goldfeld-Quandt检验法以及White检验法等。而当检测出模型确实存在异方差性时,通过采用加权最小二乘法进行修正的估计。4、采用对数形式,可以一定程度上消除异方差。5、序列相关性也是模型随机扰动项出现序列相关时产生的一类现象。与异方差的情形相类似,在序列相关存在的情况下,OLS估计量仍具无偏性与一致性,但通常的假设检验不再可靠,预测也变得无效。6、序列相关性的检测方法也有若干种,如图示法、回归检验法、Durbin-Watson检验法以及Lagrange乘子检验法等。存在序列相关性时,修正的估计方法有广义最小二乘法(GLS)以及广义差分法。7、多重共线性:多元回归模型可能存在的一类现象,分为完全共线与近似共线两类。8、模型的多个解释变量间出现完全共线性时,模型的参数无法估计。更多的情况则是近似共线性,这时,由于并不违背所有的基本假定,模型参数的估计仍是无偏、一致且有效的,但估计的参数的标准差往往较大,从而使得t-统计值减小,参数的显著性下降,导致某些本应存在于模型中的变量被排除,甚至出现参数正负号方面的一些混乱。显然,近似多重共线性使得模型偏回归系数的特征不再明显,从而很难对单个系数的经济含义进行解释。9、多重共线性的检验包括检验多重共线性是否存在以及估计多重共线性的范围两层递进的检验。而解决多重共线性的办法通常有逐步回归法(修正方法)、差分法以及使用额外信息、增大样本容量等方法。10、虚拟解释变量问题(作为解释变量)。虚拟变量将经济现象中的一些定性因素引入到可以进行定量分析的回归模型,拓展了回归模型的功能。11、如何引入不同类型的虚拟变量来解决相关的定性因素影响的分析问题:加法方式、乘法方式以及二者的组合方式。12、在引入虚拟变量时有两点需要注意,一是明确虚拟变量的对比基准,二是避免出现“虚拟变量陷阱”。13、虚拟变量陷阱:①m种属性,引入m-1个变量;②引入m个变量导致完全多重共线性