人教版九年级数学下册数无形时少直觉,形少数时难入微。数形结合百般好,隔离分家万事非。---------华罗庚二四象限一三象限函数正比例函数反比例函数解析式图象形状K0K0位置增减性位置增减性y=kx(k≠0)(k是常数,k≠0)y=xk直线双曲线y随x的增大而增大一三象限y随x的增大而减小二四象限y随x的增大而减小y随x的增大而增大填表分析正比例函数和反比例函数的区别例1:已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限?y随x的增大如何变化?(2)点B(3,4)、C()和D(2,5)是否在这个函数的图象上?142,452解:(1)设这个反比例函数为,kyx62k解得:k=12∴这个反比例函数的表达式为12yx∵k>0∴这个函数的图象在第一、第三象限,在每个象限内,y随x的增大而减小。∵图象过点A(2,6)(2)把点B、C和D的横坐标代入,可知点B、点C,点D的纵坐标,点D的坐标不满足函数关系式,所以点B、点C在函数的图象上,点D不在这个函数的图象上。12yx12yx例1:已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限?y随x的增大如何变化?(2)点B(3,4)、C()和D(2,5)是否在这个函数的图象上?142,4521、反比例函数的图象经过(2,-1),则k的值为;kyx2、反比例函数的图象经过点(2,5),若点(1,n)在反比例函数图象上,则n等于()A、10B、5C、2D、-6kyx-2A3、下列各点在双曲线上的是()2yxA、(,)B、(,)C、(,)D、(,)4332433234433483B例2:如图是反比例函数的图象一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m的取值范围是什么?(2)在这个函数图象的某一支上任取点A(a,b)和B(a′,b′),如果aa′,那么b和b′有怎样的大小关系?5myx解:(1)反比例函数图象的分布只有两种可能,分布在第一、第三象限,或者分布在第二、第四象限。这个函数的图象的一支在第一象限,则另一支必在第三象限。∵函数的图象在第一、第三象限∴m-5>0解得m>5(2)∵m-5>0,在这个函数图象的任一支上,y随x的增大而减小,∴当a>a′时b<b′例2:如图是反比例函数的图象一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m的取值范围是什么?(2)在这个函数图象的某一支上任取点A(a,b)和b(a′,b′),如果aa′,那么b和b′有怎样的大小关系?5myx1、在反比例函数的图象上有三点(x1,y1)、(x2,y2)、(x3,y3),若x1x20x3,则下列各式中正确的是()A、y3y1y2B、y3y2y1C、y1y2y3D、y1y3y221ayxAPDoyx2.如图,点P是反比例函数图象上的一点,PD⊥x轴于D.则△POD的面积为.xy2(m,n)1S△POD=OD·PD==2121nmk21思考:反比例函数上一点P(x0,y0),过点P作PA⊥y轴,PB⊥X轴,垂足分别为A、B,则四边形AOBP的面积为;且S△AOPS△BOP。kyxk2k=3.如图,点P是反比例函数图象上的一点,过点P分别向x轴、y轴作垂线,若阴影部分面积为3,则这个反比例函数的关系式是.xyoMNpx3y则垂足为轴的垂线作过有上任意一点是双曲线设,,)1(:,)0(),(AxPkxkynmP||21||||2121knmAPOASOAPP(m,n)AoyxP(m,n)Aoyx面积性质(一)).(||||||,,,,)2(如图所示则垂足分别为轴的垂线轴分别作过矩形knmAPOASBAyxPOAPBP(m,n)AoyxBP(m,n)AoyxB面积性质(二)根据象限确定k的符号___.,S的面Rt,S的面RtD.垂足,的垂C作yB.垂足,的垂A作x市2000年)6.(武2ΔOCD1ΔAOB则积为积为记为线轴过为线轴过汉如图:A、C是函数的图象上任意两点,x1yA.S1S2B.S1S2C.S1=S2D.S1和S2的大小关系不能确定.CABoyxCDDS1S2A.__,,,,,,,,,,,,,,,)0(1,.8321111111则有面积分别为的记边结三点轴于交轴引垂线经过三点分别向的图像上有三点在如图SSSOCCOBBOAAOCOBOACBAxxCBAxxyA.S1=S2=S3B.S1S2S3C.S3S1S2D.S1S2S3BA1oyxACB1C1S1S3S23、如图,已知反比例函数的图象与一次函数y=kx+4的图象相交于P、Q两点,且P点的纵坐标是6。(1)求这个一次函数的解析式(2)求三角形POQ的面积12yxxyoPQDC.2,,8,)2003.(3的纵坐标都是的横坐标和点且点两点的图象交于的图象与反比例函数已知一次函数如图年成都BABAxybkxyAyOBx求(1)一次函数的解析式(2)根据图像写出使一次函数的值小于反比例函数的值的x的取值范围。通过本节课的学习,你有什么收获?还有什么困惑吗?数缺形时少直觉,形少数时难入微.下课!课堂作业:课本家庭作业:练习册人人学有用的数学,有用的数学应当人人所学;人人学有价值的数学,人人都能获得必需的数学;不同的人学不同的数学,不同的人在数学上得到不同的发展。