1实验一应变片单臂、半桥、全桥特性比较一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。三、需用器件与单元:机头中的应变梁的应变片、测微头;显示面板中的F/V表(或电压表)、±2V~±10V步进可调直流稳压电源;调理电路面板中传感器输出单元中的箔式应变片、调理电路单元中的电桥、差动放大器;421位数显万用表(自备)。五、实验步骤:1、在应变梁自然状态(不受力)的情况下,用421位数显万用表2kΩ电阻档测量所有应变片阻值;在应变梁受力状态(用手压、提梁的自由端)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的4片应变片纵向受力阻值有变化;标有左右箭头的2片应变片横向不受力阻值无变化,是温度补偿片)。如下图1—7所示。图1—7观察应变片阻值变化情况示意图2、差动放大器调零点:按下图1—8示意接线。将F/V表(或电压表)的量程切换开关切换到2V档,合上主、副电源开关,将差动放大器的增益电位器按顺时针方向轻轻转到底后再逆向回转一点点(放大器的增益为最大,回转一点点的目的:电位器触点在根部估计会接触不良),调节差动放大器的调零电位器,使电压表显示电压为零。差动放大器的零点调2节完成,关闭主电源。图1—8差放调零接线图3、应变片单臂电桥特性实验:⑴将±2V~±10V步进可调直流稳压电源切换到4V档,将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片应变片中任意一片为工作片)与电桥单元中R1、R2、R3组成电桥电路,电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的二输入端,将W1电位器、r电阻直流调节平衡网络接入电桥中(W1电位器二固定端接电桥的±4V电源端、W1的活动端r电阻接电桥的输出端),如图1—9示意接线(粗细曲线为连接线)。图1—9应变片单臂电桥特性实验原理图与接线示意图⑵检查接线无误后合上主电源开关,当机头上应变梁自由端的测微头离开自由端(梁处于自然状态,图1—7机头所示)时调节电桥的直流调节平衡网络W1电位器,使电压表显示为0或接近0。⑶在测微头吸合梁的自由端前调节测微头的微分筒,使测微头的读数为10mm左右(测微头微分筒的0刻度线与测微头轴套的10mm刻度线对准);再松开测微头支架轴套的紧固螺钉,调节测微头支架高度使梁吸合后进一步调节支架高度,同时观察电压表显示绝对值尽量3为最小时固定测微头支架高度(拧紧紧固螺钉,图1—9机头所示)。仔细微调测微头的微分筒使电压表显示值为0(梁不受力处于自然状态),这时的测微头刻度线位置作为梁位移的相对0位位移点。首先确定某个方向位移,以后每调节测微头的微分筒一周产生0.5mm位移,根据表1位移数据依次增加0.5mm并读取相应的电压值填入表1中;然后反方向调节测微头的微分筒使电压表显示0V(这时测微头微分筒的刻度线不在原来的0位位移点位置上,是由于测微头存在机械回程差,以电压表的0V为标准作为0位位移点并取固定的相对位移ΔX消除了机械回程差),再根据表1位移数据依次反方向增加0.5mm并读取相应的电压值填入表1中。*注:调节测微头要仔细,微分筒每转一周ΔX=0.5mm;如调节过量再回调,则产生回程差。表1应变片单臂电桥特性实验数据:位移(mm)-8.0……-1.0-0.50+0.5+1.0……+8.0电压(mV)⑷根据表1数据画出实验曲线并计算灵敏度S=ΔV/ΔX(ΔV输出电压变化量,ΔX位移变化量)和非线性误差δ(用最小二乘法),δ=Δm/yFS×100%式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差:yFS满量程输出平均值,此处为相对总位移量。实验完毕,关闭电源。4六、应变片全桥特性实验步骤:除实验接线按图1—10示意接线,四片应变片组成电桥电路外,实验步骤和实验数据处理方法与单臂电桥特性实验完全相同。实验完毕,关闭电源。图1—10应变片全桥特性实验原理图与接线示意图5七、思考题:1、ΔR转换成ΔV输出用什么方法?答:可以利用桥式电路来转换2、根据图4机头中应变梁结构,梁的自由端往下施力时上、下梁片中应变片的应变方向(是拉?还是压?)。答:上梁中的应变片的应变方向是拉,下梁的则是压3、还可以用什么方法消除测微头的机械回程差?提示:实验步骤⑶中不设0位位移点,直接从位移最大处单方向调节测微头。4、应变片组成全桥桥时应注意什么问题?6实验二差动变压器测位移实验一、实验目的:了解差动变压器测位移时的应用方法二、基本原理:差动变压器的工作原理类似变压器的作用原理。差动变压器的结构如图2—1所示,由一个一次绕组1和二个二次绕组2、3及一个衔铁4组成。差动变压器一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。由于把二个二次绕组反向串接(同名端相接),以差动电势输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。当差动变压器工作在理想情况下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图2—2所示。图中U1为一次绕组激励电压;M1、M2分别为一次绕组与两个二次绕组间的互感:L1、R1分别为一次绕组的电感和有效电阻;L21、L22分别为两个二次绕组的电感;R21、R22分别为两个二次绕组的有效电阻。对于差动变压器,当衔铁处于中间位置时,图2—1差动变压器的结构示意图图2—2差动变压器的等效电路图两个二次绕组互感相同,因而由一次侧激励引起的感应电动势相同。由于两个二次绕组反向串接,所以差动输出电动势为零。当衔铁移向二次绕组L21,这时互感M1大,M2小,因而二次绕组L21内感应电动势大于二次绕组L22内感应电动势,这时差动输出电动势不为零。在传感器的量程内,衔铁位移越大,差动输出电动势就越大。同样道理,当衔铁向二次绕组L22一边移动差动输出电动势仍不为零,但由于移动方向改变,所以输出电动势反相。因此通过差动变压器输出电动势的大小和相位可以知道衔铁位移量的大小和方向。由图2—2可以看出一次绕组的电流为:二次绕组的感应动势为:7由于二次绕组反向串接,所以输出总电动势为:其有效值为:差动变压器的输出特性曲线如图2—3所示.图中E21、E22分别为两个二次绕组的输出感应电动势,E2为差动输出电动势,x表示衔铁偏离中心位置的距离。其中E2的实线表示理想的输出特性,而虚线部分表示实际的输出特性。Eo为零点残余电动势,这是由于差动变压器制作上的不对称以及铁心位置等因素所造成的。零点残余电动势的存在,使得传感器的输出特性在零点附近不灵敏,给测量带来误差,此值的大小是衡量差动变压器性能好坏的重要指标。为了减小零点残余电动势可采取以下方法:图2—3差动变压器输出特性1、尽可能保证传感器几何尺寸、线圈电气参数及磁路的对称。磁性材料要经过处理,消除内部的残余应力,使其性能均匀稳定。2、选用合适的测量电路,如采用相敏整流电路。既可判别衔铁移动方向又可改善输出特性,减小零点残余电动势。3、采用补偿线路减小零点残余电动势。图12—4是其中典型的几种减小零点残余电动势的补偿电路。在差动变压器的线圈中串、并适当数值的电阻电容元件,当调整W1、W2时,可使零点残余电动势减小。8(a)(b)(c)图2—4减小零点残余电动势电路差动变压器在应用时要想法消除零点残余电动势和死区,选用合适的测量电路,如采用相敏检波电路,既可判别衔铁移动(位移)方向又可改善输出特性,消除测量范围内的死区。图2—5是差动变压器测位移原理框图。图2—5差动变压器测位移原理框图三、需用器件与单元:机头中的振动台、测微头、差动变压器;显示面板中的F/V表(或电压表)、音频振荡器;调理电路面板传感器输出单元中的电感、调理电路面板中的电桥、差动放大器、移相器、相敏检波器、低通滤波器;双踪示波器。四、实验步骤:1、按图2—6示意接线。9图2—6差动变压器测位移组成、接线示意图2、将音频振荡器幅度调节到最小(幅度旋钮逆时针轻转到底);电压表(F/V表)的量程切换开关切到2V档。检查接线无误后合上主、副电源开关。调节音频振荡器(用示波器监测),频率f=5KHz,幅值Vp-p=2V。3、调整差动放大器增益:差动放大器增益旋钮顺时针缓慢转到底,再逆时针回转1/2。4、调节测微头到15mm处,使差动变压器衔铁明显偏离位移中点位置后,调节移相器的移相旋钮使相敏检波器输出为全波整流波形(示波器监测),如相邻波形谷底不在同一水平线上,则调节差动放大器的调零旋钮使相邻波形谷底在同一水平线上。再仔细调节测微头,使相敏检波器输出波形幅值绝对值尽量为最小(衔铁处在初级线圈的中点位置)。5、调节电桥单元中的W1、W2(二者交替配合反复调节)使相敏检波器输出波形趋于水平线(可相应调节示波器量程档观察)并且电压表显示趋于0(以电压表显示为主)。7、调节测微头到20mm处并记录电压表读数作为位移始点,以后顺时针方向调节测微头每隔△X=0.2mm从电压表上读出输出电压V值(20mm全行程范围),填入下表2。表2差动变压器测位移实验数据X(mm)V(mV)8、根据表15的实验数据作出实验曲线(自设十字坐标)并在曲线上截取线性较好的曲线段作为位移测量范围(作为传感器的量程)计算灵敏度S=△V/△X与线性度。实验完毕关闭所有电源开关。五、思考题:1、此差动变压器的量程多大?102、差动变压器输出经相敏检波器检波后是否消除了零点残余电压和死区?答:消除了3、从实验曲线上能理解相敏检波器的鉴相特性吗?实验三光纤位移传感器测位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。二、基本原理:光纤传感器是利用光纤的特性研制而成的传感器。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。光纤传感器主要分为两类:功能型光纤传感器及非功能型光纤传感器(也称为物性型和结构型)。功能型光纤传感器利用对外界信息具有敏感能力和检测功能的光纤,构成“传”和“感”合为一体的传感器。这里光纤不仅起传光的作用,而且还起敏感作用。工作时利用11检测量去改变描述光束的一些基本参数,如光的强度、相位、偏振、频率等,它们的改变反映了被测量的变化。由于对光信号的检测通常使用光电二极管等光电元件,所以光的那些参数的变化,最终都要被光接收器接收并被转换成光强度及相位的变化。这些变化经信号处理后,就可得到被测的物理量。应用光纤传感器的这种特性可以实现力,压力、温度等物理参数的测量。非功能型光纤传感器主要是利用光纤对光的传输作用,由其他敏感元件与光纤信息传输回路组成测试系统,光纤在此仅起传输作用。本实验采用的是传光型光纤位移传感器,它由两束光纤混合后,组成Y形光纤,半园分布即双D分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距d,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,如图3—1所示。发射光接收光(a)光纤测位移工作原理(b)Y形光纤图3—1Y形光纤测位移工作原理图传光型光纤传感器位移量测是根据传送光纤之光场与受讯光纤交叉地方视景做决定。当光纤探头与被测物接触或零间隙时(d=0),则全部传输光量直接被反射至传输光纤。没有提供光给接收端之光纤,输出讯号便为“零”。当探头与被测物之距离增加时,接收端之光纤接收之光量也越多,输