自旋动力学-第一章.

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

SPINDYNAMICS核自旋的操控,演化,弛豫Historical核磁共振成像技术(MRI)2003,Lauterbur(化学家)&Mansfield(物理学家)NMR方法与蛋白结构测定技术1991,Ernst(Fourier变换,二维NMR)2002,Wüthrich等NMR的发现与实现1944,Rabi(气体,分子束)1952,Purcell&Bloch(凝聚态物质)物理学奖化学奖生理医学奖五次诺贝尔奖,三个里程碑核心方法技术创新1930’sRabiMolecularBeam(分子束)HistoricalOVENSlitSlitDetectorFrequencyGeneratorRabi分子束实验----测定旋磁比RabimolecularbeamexperimenttomeasurezThecoil:产生x方向射频(RF)磁场(goingintotheboard).B0(静磁场)ww000Bw共振条件:Whenthefrequencyreachesresonance,particlesnolongerreachthedetector.0zB正向梯度0zB反向Bz0(FeynmanLecturesonPhysics)1946Bloch,Hansen,Pachard(StanfordUniv.)(液体H2O)Purcell,Torrey,Pound(HarvardUniv.)(固体:ParaffinWax)1kg1949-1951ChemicalShiftJ-Coupling:结构解析1953FirstCommercialH.R.ProtonNMRSpectrometer(¥3-5百万)Chemistsgotthepointveryquickly,thankedthephysicists,andtookover.——MartinPackard1H谱1960’sDoubleResonancePFT-NMR(CooleyandTukey)脉冲FourierNMR,双共振1975-2DNMRH.R.NMRinSolidHighfieldNMR1985-BiologicalNMRSpinImagingNMR信号相对其它检测方式灵敏度低液体NMR实验:g---mg现代固体NMR实验:~10mg第一次固体1HNMR(1945,Purcell):1kg石蜡(CWNMR)NMR应用从物理到化学FTNMR灵敏度已经104倍提高!!TechniqueAuthorEnhancementFTNMRErnstandAnderson~10-102Bo(60→600MHz)Oxford,Bruker32CryoprobesPeterStyles2-4M0NMR面临的挑战NMR面临的挑战—仍然是提高灵敏度应用从化学走向生物和医学,简单到复杂体系生物、医学样品:复杂,量少,稳定性1H(H2O)image分子影像13C,15N,31P……X样品量多(NMR)、空间分辨低(MRI)600→1000MHz14.1T→23.5T,灵敏度提高~2倍!(20年)NMR面临的挑战—时间分辨率NMR谱/MRI时间分辨:ms脑功能3.ThePrinciplesofNuclearMagnetismA.Abragam,CarendonPress,19614.PrinciplesofNuclearMagneticResonanceinOneandTwoDimensionsR.R.Ernst,G.Bodenhausen,A.Wokaun,ClarendonPress,19922.PrinciplesofNuclearMagneticResonanceC.P.Slichter,19931.SpinChoreography:BasicStepsinHighResolutionNMRRayFreeman7.核磁共振波谱裘祖文,裴奉奎19898.核磁共振原理与实验方法高汉宾张振芳,20086.LECTURECOURSE:NMRSPECTROSCOPY???5.UnderstandingNMRSpectroscopyJamesKeeler,2002参考书ElectronicMagnetismClassicalangularmomentumQuantumangularmomentumElectronicMagnetismCharater1经典角动量ClassicalangularmomentumSpinAngularmomentum(electron)轨道角动量(Orbitalangularmomentum)LrVmP(linearmomentum)wILS自旋角动量Spinangularmomentum(I:转动惯量)Magneticmoment(磁矩)22wer=ISnnr2TenorbitLLmeorbit2memeg2??SLS-eExperiment:g=2SL电子圆周运动:轨道磁矩---轨道角动量电子自旋运动:自旋磁矩---自旋角动量磁旋比(magnetogyricratio)旋磁比(gyromagneticratio)L磁矩角动量L电子00BμE221EJIEnergy外磁场中的磁矩经典力学MagneticmomentinmagneticField动能势能力zBzEfzzz0Force,TorqueandMotionBμGTorque(力矩):平动转动TorqueLawofangularmomentum(动量矩定理)----运动方程0BμdtdGJμBγ-Bμγdtμd00JosephLarmor(1857-1942)BμGTorque(力矩):Jμ运动方程Larmorprocession拉莫进动w0γBωGraphicalInterpretation1.Quantumangularmomentum(orbit)π2h/1)(JJLmJ=-J,-J+1,……J-1,J2J+1values(~10-34Js))1(212JJBJLIEAngularmomentumisquantized.大小量子化JZmL角动量沿某一轴(Z任意)投影量子化磁量子数mJ:azimuthal(magnetic)quantumnumber空间取向量子化)1(2JJmeJeEJBohrmagnetron磁矩量子化LL方向或方位??动能BjeJZmmem2轨道磁矩最小单元L外磁场中的角动量、磁矩(量子力学)角动量量子数JSZSZL1)(SSLS21zSZmLBSSL3Uhlenbeck,Goudsmit,1925BsesSSmmemLZz2LS非经典物理,相对论量子力学(~10-34Js)~eeevmr~ve~137C(光速)Quantumangularmomentum(spin)BJeJmmemZ2Spin:Orbit:总自旋S=1/2Z投影Mz=1/2Stern—Gerlach实验(1922):高温下蒸发中性顺磁的银原子束,通过不均匀磁场,无Lorentz力银原子束经典随机取向磁铁zBzEfzzz0esSZBzmemL21Experiment:(LS)Z(1/2,-1/2)量子+经典SL但是不能确定LS方向!!!电子自旋性质(实验)Oncewehaveselectedapurecomponentalongthez-axis,itstaysinthatstate.Spin½particle(e.g.silveratoms)“Improved”Stern-GerlachExperimentBz0Bz0电子自旋性质(实验)一旦选择纯+Z分量,就保持该态“Improved”Stern-GerlachExperimentSpin½particle(e.g.silveratoms)Whateverhappenedalongthez-axisdoesn’tmatteranymoreifwelookalongthex-axis.Itisonceagainsplitinto2beams.outbackBx0Bz0X电子自旋性质(实验)X方向两个态0010m1-m0mZ00γBωhυΔEFormulaBohr;1mruleselectionE-EI1,I,1,II,mmBγEBγBμEBBBLL能级和约迁Energylevelsandtransitions2/1m2/1mSL跃迁选择定则(射频场作用下)Whatisspin?mIz)]1([2IIII),1,...,1,(IIIImWhenaparticleisinstate,wecanknowthez-component……andalsothemagnitudeatthesametime.mandIarequantumnumbers.ForagivenI(e.g.½),mcantakevaluesfrom–Ito+I.Thus,thereare2I+1states.Whatisspin?Spinisaquantummechanicalpropertyofmanyfundementalparticlesorcombinationsofparticles.Itiscalled“spin”becauseitisatypeofangularmomentumandisdescribedbyequationstreatingangularmomentum.Angularmomentumisavector.Ideally,wewouldliketobeabletodeterminethe3Dorientationandlengthofsuchavector.However,quantummechanicstellsusthatthatisimpossible.Wecanknowoneorientation(byconventionthez-axis)andthemagnitudesimultaneously,buttheotherorientationsarecompletelyunknown.Anotherwayofstatingthesamethingisthatthez-component(Iz)andthesquareofthemagnitude(I2)simultaneouslysatisfythesameeigenfunctions.ElectronicMagnetism(材料磁性)χ:magneticsusceptibilityjjijiBMAnisotropicij:TensorBM10μ0=4π×10−7Hm−1vacuumpermeability.(isotropic)并矢Scalar标量(数):转动变换下不变Vector矢量:),,(321AAAATensor张量:ii,ij,ik,ji,jj,jk,ki,kj,kk二阶Tensor张量:9个分量(i,j=1,2,3)klklljkiijACCA'转动变换下:AA扩散系数,应力,应变……DCDC转动变换下:jjijiACA''A顺磁paramagnetic(χ0).1/TUnpairedelectron---Curielaw1/(T-Tc)Curie-Weisslaw:independentofT(Metal)T=0K2/31)(SSQuantumclassical抗磁diamagnetic(χ0,in

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功