自适应滤波器设计及Matlab实现

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

自适应滤波器:根据环境的改变,使用自适应算法来改变滤波器的参数和结构。这样的滤波器就称之为自适应滤波器。数学原理编辑以输入和输出信号的统计特性的估计为依据,采取特定算法自动地调整滤波器系数,使其达到最佳滤波特性的一种算法或装置。自适应滤波器可以是连续域的或是离散域的。离散域自适应滤波器由一组抽头延迟线、可变加权系数和自动调整系数的机构组成。附图表示一个离散域自适应滤波器用于模拟未知离散系统的信号流图。自适应滤波器对输入信号序列x(n)的每一个样值,按特定的算法,更新、调整加权系数,使输出信号序列y(n)与期望输出信号序列d(n)相比较的均方误差为最小,即输出信号序列y(n)逼近期望信号序列d(n)。20世纪40年代初期,N.维纳首先应用最小均方准则设计最佳线性滤波器,用来消除噪声、预测或平滑平稳随机信号。60年代初期,R.E.卡尔曼等发展并导出处理非平稳随机信号的最佳时变线性滤波设计理论。维纳、卡尔曼-波色滤波器都是以预知信号和噪声的统计特征为基础,具有固定的滤波器系数。因此,仅当实际输入信号的统计特征与设计滤波器所依据的先验信息一致时,这类滤波器才是最佳的。否则,这类滤波器不能提供最佳性能。70年代中期,B.维德罗等人提出自适应滤波器及其算法,发展了最佳滤波设计理论。以最小均方误差为准则设计的自适应滤波器的系数可以由维纳-霍甫夫方程解得式中W(n)为离散域自适应滤波器的系数列矩阵(n)为输入信号序列x(n)的自相关矩阵的逆矩阵,Φdx(n)为期望输出信号序列与输入信号序列x(n)的互相关列矩阵。B.维德罗提出的一种方法,能实时求解自适应滤波器系数,其结果接近维纳-霍甫夫方程近似解。这种算法称为最小均方算法或简称LMS法。这一算法利用最陡下降法,由均方误差的梯度估计从现时刻滤波器系数向量迭代计算下一个时刻的系数向量式中憕【ε2(n)】为均方误差梯度估计,ks为一负数,它的取值决定算法的收敛性。要求,其中λ为输入信号序列x(n)的自相关矩阵最大特征值。自适应LMS算法的均方误差超过维纳最佳滤波的最小均方误差,超过量称超均方误差。通常用超均方误差与最小均方误差的比值(即失调)评价自适应滤波性能。抽头延迟线的非递归型自适应滤波器算法的收敛速度,取决于输入信号自相关矩阵特征值的离散程度。当特征值离散较大时,自适应过程收敛速度较慢。格型结构的自适应算法得到广泛的注意和实际应用。与非递归型结构自适应算法相比,它具有收敛速度较快等优点。人们还研究将自适应算法推广到递归型结构;但由于递归型结构自适应算法的非线性,自适应过程收敛性质的严格分析尚待探讨,实际应用尚受到一定限制。自适应滤波器自适应滤波器应用领域编辑自适应滤波器应用于通信领域的自动均衡、回波消除、天线阵波束形成,以及其他有关领域信号处理的参数识别、噪声消除、谱估计等方面。对于不同的应用,只是所加输入信号和期望信号不自适应滤波器发展前景编辑1、广泛用于系统模型识别如系统建模:其中自适应滤波器作为估计未知系统特性的模型。2、通信信道的自适应均衡如:高速modem采用信道均衡器:用它补偿信道失真,modem必须通过具有不同频响特性而产生不同失真的信道有效地传送数据,则要求信号均衡器具有可调系数,据信道特性对这些系数进行优化,以使信道失真的某些量度最小化。又如:数字通信接收机:其中自适应滤波器用于信道识别并提供码间串扰的均衡器。3、雷达与声纳的波束形成如自适应天线系统,其中自适应滤波器用于波束方向控制,并可在波束方向图中提供一个零点以便消除不希望的干扰。4、消除心电图中的电源干扰如:自适应回波相消器,自适应噪声对消器:其中自适应滤波器用于估计并对消预期信号中的噪声分量。5、噪声中信号的滤波、跟踪、谱线增强以及线性预测等。自适应滤波器设计及Matlab实现摘要本文从随机噪声的特性出发,分析了传统滤波和自适应滤波基本工作原理和性能,以及滤波技术的现状和发展前景。然后系统阐述了基本维纳滤波原理和自适应滤波器的基本结构模型,接着在此基础上结合最陡下降法引出LMS算法。在MSE准则下,设计了一个定长的自适应最小均方横向滤波器,并通过MATLAB编程实现。接着用图像复原来验证该滤波器的性能,结果表明图像的质量在MSE准则下得到了明显的改善。最后分析比较了自适应LMS滤波和频域维纳递归滤波之间的性能。本文还对MATLAB里面的自适应维纳滤波函数wiener2进行了简单分析。关键字:退化图像维纳滤波自适应滤波最陡下降法LMSAbstractThispaperanalysesthebasicworktheory,performanceoftraditionalfilterandadaptivefilterbasedonthepropertyofrandomnoise,andintroducethestatusquoandtheforegroundoffiltertechnology.Thenweexplainbasictheoryofwienerfilterandbasicstructuremodelofadaptivefilter,andcombinethemethodofsteepestdescenttodeducetheLMS.AfterwardaccordingtotheMSErule,wedesignalimitedlengthtransversalfilter,andimplementbyMATLAB.AndthenwevalidateperformanceofadaptiveLMSfilterbyrestoringimages,TestresultshowthatthequalityofthedegradeimageswereimprovedundertheruleofMSE.Finally,wecomparetheperformanceofadaptiveLMSfilteranditerativewienerfilter.Wealsosimplyanalysesthewiener2()whichisaadaptivefilterinMATLAB.Keywords:degradeimage;wienerfilter;adaptivefilter;ADF;LMSalgorithm目录1绪论…………………………………………………………………………………11.1引言…………………………………………………………………………11.2研究目标及现状……………………………………………………………11.2.1图像复原技术的目标……………………………………………11.2.2图像复原技术的研究现状………………………………………12理论基础…………………………………………………………………………32.1基本自适应滤波器的模块结构……………………………………………32.2基本维纳滤波原理…………………………………………………………43自适应滤波原理及算法………………………………………………………63.1横向滤波结构的最陡下降算法……………………………………………73.1.1最陡下降算法的原理……………………………………………73.1.2最陡下降算法稳定性……………………………………………103.2LMS滤波原理及算法……………………………………………………113.2.1从最陡下降算法导出LMS算法………………………………113.2.2基本LMS算法的实现步骤……………………………………113.2.3基本LMS算法的实现流程图…………………………………123.2.4LMS算法的Matlab实现………………………………………123.2.5wiener2()的原理……………………………………………123.2.6LMS性能分析——自适应收敛性……………………………134Matlab实验结果…………………………………………………………144.1.LMS滤波器的收敛性………………………………………………144.2.LMS滤波器和频域迭代维纳滤波器的性能比较……………………165总结………………………………………………………………………………18致谢…………………………………………………………………………………19参考文献……………………………………………………………………………20附录A………………………………………………………………………………21附录B………………………………………………………………………………22附录C………………………………………………………………………………271绪论1.1引言人类传递信息的主要媒介是语言和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,其它如味觉、触觉、嗅觉总的加起来不过占20%,所以图像信息是十分重要的信息[1]。然而,在图像的获取和图像信号的传输过程中,图像信号中不可避免的混入各种各样的随机噪声,造成图像失真(图像退化)。造成人类所获取的信息和实际是有偏差的,成为人类从外界获取准确信息的障碍。因此,对图像信号中的随机噪声的抑制处理是图像处理中非常重要的一项工作。在图像的获取和传输过程中所混入的噪声,主要来源于通信系统中的各种各样的噪声,根据通信原理及统计方面的知识,可以知道在通信系统中所遇到的信号和噪声,大多数均可视为平稳的随机过程[15]。又有“高斯过程又称正态随机过程,它是一种普遍存在和重要的随机过程,在通信信道中的噪声,通常是一种高斯过程,故又称高斯噪声。因此,在大多数的情况下,我们可以把造成图像失真的噪声可视为广义平稳高斯过程。本文针对图像信号中混入的随机噪声,在怎样把现有的滤波算法应用到实际的图像复原中去的问题上提出了解决方法,并且应用Matlab软件编程对图像进行处理。1.2研究目标及现状1.2.1图像复原技术的目标为了从含有噪声的数据中提取我们所感兴趣的、接近规定质量的图像,我们需要设计一个系统满足:当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制,即最佳滤波器。1.2.2图像复原技术的研究现状目前的图像复原技术,即去噪的滤波技术可以分为两大类:传统滤波和现代滤波。传统滤波技术是建立在已知有用信号和干扰噪声的统计特性(自相关函数或功率谱)的基础上的噪声去除;现代滤波技术则是不需要知道图像的先验知识,只是根据观测数据,即可对噪声进行有效滤除。早在20世纪40年代,就对平稳随机信号建立了维纳滤波理论。根据有用信号和干扰噪声的统计特性(自相关函数或功率谱),以线性最小均方误差(MSE)估计准则所设计的最佳滤波器,称为维纳滤波器。这种滤波器能最大程度的滤除干扰噪声,提取有用信号。但是,当输入信号的统计特性偏离设计条件,则它就不再是最佳的了,这在实际应用中受到了限制。到60年代初,由于空间技术的发展,出现了卡尔曼滤波理论,即利用状态变量模型对非平稳、多输入多输出随机序列作最优估计。卡尔曼滤波器既可以对平稳的和平稳的随机信号作线性最佳滤波,也可以作为非线性滤波[2]。然而只有在对信号和噪声的统计特性已知的情况下,这两种滤波器才能获得最优解。在实际的应用中,往往无法得到这些统计特性的先验知识,或者统计特性是随时间变化的,因此,这两种滤波器就实现不了真正的最佳滤波。WidrowB.和Hoff于1967年提出的自适应滤波理论,可使在设计自适应滤波器时不需要事先知道关于输入信号和噪声的统计特性的知识,它能够在自己的工作过程中逐渐估计出所需的统计特性,并以此为依据自动调整自己的参数,以达到最佳滤波效果。一旦输入信号的统计特性发生变化,它又能够跟踪这种变化,自动调整参数,使滤波器性能重新达到最佳。自适应滤波器自动调节参数可以通过各种不同的递推算法来实现,由于它采用的是逼近的算法,使得实际估计值和理论值之间必然存在差距,也就造成了自适应滤波问题没有唯一的解。依照各种递推算法的特点,我们把它应用于不同的场合。现在广为应用的自适应滤波方法主要是基于以下几种基本理论,再融合递推算法导出来的:(1)基于维纳滤波理论的方法维纳滤波是

1 / 40
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功