化工原理课程设计说明书设计题目:苯精馏塔塔顶冷却器班级:姓名:指导教师:完成日期:2015.1.10摘要苯精馏塔塔冷却器是帮助苯散热的一个装置。本次课程设计采用浮头式换热器来实现苯精馏塔塔冷却。在设计中,主要以循环水为冷却剂,在给定的操作条件下对苯精馏塔塔冷却器进行设计。本设计的内容包括:1、设计方案的确定:换热器类型的选择、流动空间的选择等。2、换热器的工艺计算:换热器面积的估算、换热器工艺尺寸的计算、换热器的核算等。3、操作条件图等内容。关键词:苯;循环水;换热器;传热第1章绪论1.1换热器技术概况换热器(英语翻译:heatexchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。换热器是化学、石油化学及石油炼制工业中以及其他一些行业中广泛使用的热量交换设备,他不仅可以单独作为加热器、冷却器等使用,而且是一些化工单元操作的重要附属设备,因此在此化工生产中占有重要的地位。1.2换热器的发展二十世纪20年代出现板式换热器,并应用于食品工业。以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。二十世纪30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。二十世纪30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。二十世纪60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紫凑型板面式换热器的蓬勃发展和广泛应用。自二十世纪60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。二十世纪70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。长期以来,非接触式换热器一直是管壳式(列管式)换热器一国独大的局面。然而近几十年来,这种平衡有所改变。这种改变是由于各种板式类换热器的逐步开发和应用所带来的。板式类换热器能够被深入研究和开发,固然是有其历史必然的。回顾换热器发展历程,虽然板式换热设备的充分开发只是近些年的事情,但是其理论和技术的出现却要早的多。但是人们最初舍弃了这种换热性能远远占优的换热器形式,而是选择并大量应用了管壳式换热器。当初人们之所以做出这种选择,原因很简单,只是出于强度考虑。板式类换热器的结构强度远远低于管壳类换热器,所以不能够应用于高压或大多的中压场合。板式类换热器的这个缺点是由其结构特点所决定的,所以在其自身范围内无法改变和突破,而它也就严重地制约了这种高换热性能换热器的应用和发展。形成了在最初的相当长的一段时期里,板式类换热器没有受到人们喜爱的局面,其技术进展自然也相当可怜。即便是在其有了长足发展和应用的今天,仍然是由于其结构强度低的原因一一这个自身无法逾越的痼疾,它的应用领域也仍旧局限在一定范围内。那么,既然是结构强度没有得到根本性的改变,近些年板式类换热器又是怎样被重视起来的呢?这种变化是与世界经济的发展环境,尤其是能源发展环境的变化息息相关的。世界能源的日益紧张与危机,使得“节能”与“高效”逐渐受到重视,加之“节能一一减排一一环保”的概念日益深入人心,各国政府和机构都逐年加大了这方面投入的人力和物力,同时也取得了许多可喜的成果。很显然,板式类换热器这种高效的换热方式,也就顺理成章地受到重视,并进行了再次开发,且在其强度范围所能允许的范围内大量应用遍地开花。其技术发展也达到了前所未有的时刻。制造规格越来越大,结构形式越来越多。并出现了不可拆的焊合一体式板式换热器,尽管不能方便地拆洗,强度却有所增加。管壳类换热器由于始终受到普遍应用和重视,其理论研究的深度和设备改进的步伐都是板式类换热器所不能比拟昀。在新的节能及环保浪潮中,其技术和发展速度又有所提高。许多新型高效换热器不短涌现,如折流杆换热器、新结构高效换热器、高效重沸器、高效冷凝器、双壳程换热器、螺纹管换热器、螺纹锁紧环换热器、Q环高压换热器、以及非金属换热器、稀有金属换热器等都是其代表杰作,这些新型高效换热器的出现已经并正在为飞速发展的经济和节约能源作出了不可估量的贡献。纵观换热设备的发展及演变历史,不难看出,在板式类换热器广泛发展,管壳类换热器不再一国独大的今天,以下四个特点始终没有改变:1.结构强度高的管壳类换热器仍居于主导地位。2.管壳类换热器换热性能仍远低于板式类换热器。3.板式类换热器的结构强度仍远低于管壳类换热器。4.没有换热性能强同时结构强度高的理想型换热器。1.3换热器在工业生产中的应用1.3.1换热器的工业应用在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,并占有十分重要的地位。通常在化工厂的建设中换热器投资比例为11%,在炼油厂中高达40%。随着化学工业的迅速发展及能源价格的提高,换热器的投资比例将进一步加大。在化工厂,换热器的费用约占总费用的10%一20%,在烁油厂约占总费用的35%一40%。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。1.3.2新型换热器1、气动喷涂翅片管换热器俄罗斯提出了一种先进方法,即气动喷涂法,来提高翅片化表面的性能。其实质是采用高速的冷的或稍微加温的含微粒的流体给翅片表面喷镀粉末粒子。用该方法不仅可喷涂金属还能喷涂合金和陶瓷(金属陶瓷混合物),从而得到各种不同性能的表面。通常在实践中翅片底面的接触阻力是限制管子加装翅片的因素之一。为了评估翅片管换热器元件进行了试验研究。试验是采用在翅片表面喷涂ac-铝,并添加了24a白色电炉氧化铝。将试验所得数据加以整理,便可评估翅片底面的接触阻力。将研究的翅片的效率与计算数据进行比较,得出的结论是:气动喷涂翅片的底面的接触阻力对效率无实质性影响。为了证实这一点,又对基部(管子)与表面(翅片)的过渡区进行了金相结构分析。对过渡区试片的分析表明,连接边界的整个长度上无不严密性的微裂纹。所以,气动喷涂法促进表面与基本相互作用的分支边界的形成,能促进粉末粒子向基体的渗透,这就说明了附着强度高,有物理接触和金属链形成。因而气动喷涂法不但可用于成型,还可用未将按普通方法制造的翅片固定在换热器管子的表面上,也可用来对普通翅片的底面进行补充加固。可以预计,气动喷涂法在紧凑高效换热器的生产中,将会得到广泛应用。2、螺旋折流板换热器在管壳式换热器中,壳程通常是一个薄弱环节。通常普通的弓形折流板能造成曲折的流道系统(z字形流道),这样会导致较大的死角和相对高的返混。而这些死角又能造成壳程结垢加剧,对传热效率不利。返混也能使平均温差失真和缩小。其后果是,与活塞流相比,弓形折流板会降低净传热。优越弓形折流板管壳式换热器很难满足高热效率的要求,故常为其他型式的换热器所取代(如紧凑型板式换热器)。对普通折流板几何形状的改进,是发展壳程的第一步。虽然引进了密封条和附加诸如偏转折流板及采取其他措施来改进换热器的性能,但普通折流板设计的主要缺点依然存在。为此,美国提出了一种新方案,即建议采用螺旋状折流板。这种设计的先进性已为流体动力学研究和传热试验结果所证实,此设计已获得专利权。此种结构克服了普通折流板的主要缺点。螺旋折流板的设计原理很简单:将圆截面的特制板安装在“拟螺旋折流系统”中,每块折流板占换热器壳程中横剖面的四分之一,其倾角朝向换热器的轴线,即与换热器釉线保持一倾斜度。相邻折流板的周边相接,与外圆处成连续螺旋状。折流板的轴向重叠,如欲缩小支持管子的跨度,也可得到双螺旋设计。螺旋折流板结构可满足相对宽的工艺条件。此种设计具有很大的灵活性,可针对不同操作条件,选取最佳的螺旋角;可分别情况选用重叠折流板或是双螺旋折流板结构。3、新型麻花管换热器瑞典alares公司开发了一种扁管换热器,通常称为麻花管换热器。美国休斯顿的布朗公司做了改进。螺旋扁管的制造过程包括了“压扁”与“热扭”两个工序。改进后的麻花管换热器同传统的管壳式换热器一样简单,但有许多激动人心的进步,它获得了如下的技术经济效益:改进了传热,减少了结垢,真正的逆流,降低了成本,无振动,节省了空间,无折流元件。由于管子结构独特使管程与壳程同时处于螺旋运动,促进了湍流程度。该换热器总传热系数较常规换热器高40%,而压力降几乎相等。组装换热器时也可采用螺旋扁管与光管混合方式。该换热器严格按照asme标准制造。凡是用管壳式换热器和传统装置之处均可用此种换热器取代。它能获得普通管壳式换热器和板框式传热设备所获得的最佳值。估计在化工、石油化工行业中具有广阔的应用前景。4、非钎焊绕丝筋管螺旋管式换热器在管子上缠绕金属丝作为筋条(翅片)的螺旋管式换热器(ta),一般都是采用焊接方法将金属丝固定在管子上。但这种方法对整个设备的质量有一系列的影响,因为钎焊法必将从换热中“扣除”很大一鄯分管子和金属丝的表面。更重要的是,由于焊料迅速老化和破碎会造成机器和设备堵塞,随之提前报损。第2章设计方案化工生产中所用的换热器类型很多。不同类型换热器,其性能各异,因此要了解各种换热器的特点,以便根据工艺要求选用适当类型,同时还要根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力等。2.1换热器类型的选择2.1.1换热器的分类随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器也各有优缺点,性能各异。(一)按用途划分按照其用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。加热器是把流体加热到必要的温度而使用的热交换器,被加热的流体没有相变化。冷却器是用于把流体冷却到必要的温度的热交换器。冷凝器是用于冷却凝结性气体,并使其凝结液化的热交换器。若使气体全部冷凝,则称为全凝器,否则成为分凝器。再沸器是用于再加热装置中冷凝了的液体使其蒸发的热交换器。深冷器是用于把流体冷却到oaC以下的很低温度的热交换器。过热器是将流体(一般是气体)加热到过热状态的热交换器。(二)按热量交换原理和方式划分按照冷、热流体热量交换的原理和方式不同,换热器主要分直接接触式(混合式)、蓄热式和间壁式三类。1)直接接触式(混合式)换热器:冷、热流体直接接触和混合进行换热。这类换热器结构简单,价格便宜,常做成塔状。2)蓄热式换热器:冷、热流体交替通过格子砖或填料等蓄热体以实现换热。这类换热器由于少量流体相互掺和易造成流体间的“污染”。3)间壁式换热器:冷、热流体通过将它们隔开的固体壁面进行传热,这是工业上应用最为广泛的一类换热器。虽然直接接触式和蓄热式换热设备具有结构简单、制造容易等特点,但由于在换热过程中,有高温流体和低温流体相互混合或部分混合,使其在应用上受到限制。因此工业上所用换热设备以间壁式换热器居多。间壁式换热器的类型也是多种多样,从其结构上大致可以分为:一、管式换热器1、管壳式换热器(1)固定管板式换热器(2)浮头式换热器(3)U型管式换热器2、套管式换热器3、蛇管换热器(1)沉浸式蛇管换热器(2)喷淋式蛇管换热器4、翅片管换热器二、板式换热器1、夹套换热器2、平板式换热器3、螺旋板式换热器4、板翅式换热器5、伞板换热器6、螺旋板式换热器三、热管换热器不同的换热器各有自己的优缺点和使用条件。一般来说,板式换热器单位体积的传热面积较大、设备紧凑(250—1500坍2/州3),低耗材(15kg,m3),传热系数大,热损失小。但承压能力较低,工作介质的处理量较小,且制造加工较复杂,成本较高。而管式换热器虽然在传热性能和设备的紧凑性上不及板式换热器,但它具有结构较简单、加工制造比较容易,结构坚固,性能可靠,适应面广等突出优点,因此被广泛用于化工生产中。列管式换热器是最典型的管壳式换热器,它在工业上的应用有着悠久的历