荧光光谱教程一、化学发光反应的类型1.直接化学发光和间接化学发光化学发光反应可分直接发光和间接发光。直接发光是被测物作为反应物直接参加化学发光反应,生成电子激发态产物分子,此初始激发态能辐射光子。表示如下:式中A或B是被测物,通过反应生成电子激发态产物C*,当C*跃迁回基态时,辐射出光子hv。间接发光是被测物A或B通过化学反应后生成初始态C*,C*不直接发光,而是将其能量转移给F,使F处于激发态,当F*跃迁回基态时,产生发光。如下式表示式中C*为能量给予体,而F为能量接受体。例如,用罗丹明B-没食子酸的乙醇溶液测定大气的O3,其化学发光反应就属这一类型。没食子酸被O3氧化时吸收反应所产生的化学能,形成受激中间体A*,而A*又迅速将能量转给罗丹明B,并使罗丹明B分子激发,处于激发态的罗丹明B分子回到基态时,发射出光子。该光辐射的最大发射波长为584nm。2.气相化学发光和液相化学发光按反应体系的状态来分类,如化学发光反应在气相中进行称气相化学发光,在液相或固相中进行称液相或固相化学发光,在两个不同相中进行则称为异相化学发光。本节主要讨论气相和液相化学发光,其中液相化学发光在痕量分析中更为重要。(1)气相化学分光主要有O3、NO、S的化学发光反应,可用于监测空气中的O3、NO、NO2、H2S、SO2和CO等。☆臭氧与乙烯的化学发光反应机理是O3氧化乙烯生成羰基化合物的同时产生化学发光,发光物质是激发态的甲醛。这个气相化学发光的最大波长为435nm,发光反应对O是特效的,线性响应范围为1ng·mL-1~1μg·mL-1。☆一氧化氮与臭氧的气相化学发光反应有较高的化学发光效率,其反应机理为:这个反应的发射光谱范围为600~875nm,灵敏度可达1ng·mL-1。若需同时测定大气中的NO2时,可先将NO2还原为NO,测得NO总量后,从总量中减去原试样中NO的含量,即为NO2的含量。☆SO2、NO、CO等都能与氧原子进行气相化学光反应,他们的反应分别为:此反应的最大发射波长为200nm,测定灵敏度可达1ng·mL-1。发射光谱范围为400~1400nm,测量灵敏度可达1ng·mL-1。发射光谱范围为300~500nm,测定灵敏度可达1ng·mL-1。这些反应的关键是要求有一个稳定的氧原子源,一般可由O3在1000℃的石英管中分解为O2和O而获得。☆火焰化学发光,氮的氧化物(如NO2、NO等)及挥发性的硫化物(如SO2、H2S、CH3SH等)富氢火焰中燃烧都会发生化学发光。(2)液相化学发光用于这一类化学发光分析的发光物质有鲁米诺、光泽精、洛粉碱等,其中鲁米诺(Lominol)化学发光反应机理研究得最久,其化学发光体系已用于分析化学测量痕量的H2O2以及Cu、Mn、Co、V、Fe、Cr、Ce、Hg和Th等金属离子。鲁米诺是3-氨基苯二甲酰肼,它产生化学发光反应的为0.01~0.05。鲁米诺在碱性溶液中形成叠氮醌(a),叠氮醌在碱性溶液中与氧化剂如H2O2作用生成不稳定的桥式六员环过氧化物中间体(b)。然后再转化为激发态的氨基邻苯二甲酸根离子(c),其价电子从第一电子激发态的最低振动能级层跃迁回基态中各个不同振动能级层时,产生最大发射波长为425nm的光辐射,整个反应历程可表示如下:以上的化学发光反应的速率很慢,但某些金属离子(如在本节开始所提到的金属离子)会催化这一反应,增强发光强度。利用这一现象可以测定这些金属离子。还可将分析物通过酶的转化,生成化学发光反应物,然后再进行化学发光反应,根据化学发光强度间接测定被分析物。例如,葡萄糖在葡萄糖氧化酶的催化下进行氧化反应,反应产物H2O2可通过鲁米诺化学发光反应进行测定,从而间接测定葡萄糖。氨基酸的测定也一样:H2O2使鲁米诺发光。如果使酶促反应的底物浓度一定,则上述反应可用于酶测定或酶动力学研究。下表中给出其他用于液相化学发光反应的发光试剂:俗名洛粉碱(Lophine)光泽精(Lucigenin)没食子酸(Ⅰ)系统命名2,4,5-三苯基咪唑N,N-二甲基二丫啶硝酸盐焦性没食子酸(Ⅱ)结构式二、化学发光的基本原理某些物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应产物分子激发到激发态,受激分子由激发态去激化跃迁回基态时以辐射形式发射出一定波长的光。这种吸收化学能使分子激发并发光的过程,称为化学发光。利用化学发光建立起来的分析方法称为化学发光分析法。化学发光也发生在某些生物体系内,称为生物发光。化学发光分析法的特点是,灵敏度高,选择性好,仪器设备简单,分析速度快。但是目前可供发光用的试剂还不多,应用还有限,发光机理有待进一步研究。化学发光是基于化学反应所提供的化学能使分子激发而发射光的,任何一个化学发光反应都包含有化学激发和发光两个关键过程,它必须满足下列条件:1.化学反应必须提供足够的激发能,激发能的主要来源是反应焓,能在可见光范围内发生化学发光的物质,其激发能ΔE通常是在150~400KJ·mol-1范围。许多氧化还原反应的反应焓与此相当,因此大多数化学发光反应为氧化还原反应。2.要有有利的化学反应历程,使反应产生的化学能用于不断地产生激发态分子。对于有机化合物的液相化学发光来说,芳香族化合物和羰基化合物更容易生成激发态的产物。3.激发态分子跃迁回基态时,要能释放出光子,或激发态分子能将能量转移给另一种分子,使该分子受激后发射光子。总之,激发态分子不能以热的形式损失能量。化学发光反应的化学发光效率,又称为化学发光的总量子产率。它决定于生成激发态产物分子的化学激发效率和激发态分子的发射效率。定义为:化学反应的发光效率、光辐射的能量大小以及光谱范围,完全由参加反应物质的化学反应所决定。每一个化学发光反应都有其特征的化学发光光谱及不同的化学发光效率。化学发光反应的发光强度ICl以单位时间内发射的光子数表示,它与化学发光反应的速率有关,而反应速率又与反应分子浓度有关。可以下式表示:式中表示t时刻的化学发光强度,是与分析物有关的化学发光效率,dc/dt是分析物参加反应的速率。如果反应是一级动力学反应,t时刻的化学发光强度与该时刻的分析物浓度成正比,就可以通过检测化学发光强度来定量测定分析物质。在化学发光分析中通常用峰高表示发光强度,即峰值与被分析物浓度成线性关系。另一种分析方法是利用总发光强度与分析物浓度的定量关系。就是在一定的时间间隔里对化学发光强度进行积分,得到:如果取t1=0,t2为反应结束所需的时间,则得到整个反应产生的总发光强度,它与分析物浓度存在线性关系。三、化学发光分析的应用化学发光分析最大的特点是灵敏度高,对气体和痕量金属离子的检出限都可达ng·mL-1级。在环境检测中化学发光法比吸收光谱法和微库仑法具有更高的灵敏度,又能进行快速连续分析,因此气相化学发光反应已广泛用于空气中有害物质如O3、氮氧化物、CO、SO2、H2S等的监测。其测定灵敏度可达1~3ng·mL-1。液相化学发光反应,如鲁米诺、光泽精、没食子酸等发光体系可测定天然水和废水中的金属离子。在医学、生物学、生物化学和免疫学研究中,化学发光分析也是一种重要的手段。表4.8~4.10列举了一些实例。四、荧光和磷光分析法的基本原理第一次记录荧光现象的是16世纪西班牙的内科医生和植物学家N.Monardes,他于1575年提到,在含有一种称为“LignumNephriticum”的木头切片的水溶液中,呈现出极为可爱的天蓝色。以后逐步有一些学者也观察和描述过荧光现象,但对其本质及含义的认识都没有明显的进展。直到1852年,对荧光分析法具有开拓性工作的Stokes在考察奎宁和绿色素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍为长些,而不是由光的漫反射引起的,从而导入荧光是光发射的概念,并提出了“荧光”这一术语,他还研究了荧光强度与荧光物质浓度之间的关系,并描述了在高浓度或某些外来物质存在时的荧光猝灭现象。可以说,他是第一个提出应用荧光作为分析手段的人。1867年,Goppelsr?de应用铝一桑色素配位化合物的荧光测定铝,这是历史上首次进行的荧光分析工作。进入二十世纪以来,荧光现象被研究得更多了,在理论和实验技术上都得到极大的发展。特别是近几十年来,在其他学科迅速发展的影响下,随着激光、计算机和电子学的新成就等一些新的科学及技术的引入,大大推动了荧光分析法在理论上及实验技术上的发展,出现了许多新的理论和新的方法。在我国,二十世纪五十年代初期仅有极少数的分析工作者从事荧光分析方面的研究工作。到了七十年代以后,已逐步形成一支在这个研究领域中的工作队伍。目前,研究内容已从经典的荧光分析方法扩展到新近发展起来的一些新方法和新技术。磷光也是某些物质在紫外光照射下所发射的光,早期并没有与荧光明确的区分。1944年Lewis和Kasha提出了磷光与荧光的不同概念,指出磷光是分子从亚稳的激发三重态跃迁回基态所发射出的光,它有别于从激发单重态跃迁回基态所发射的荧光。磷光分析法由于其有某些特点,几十年来的理论研究及应用也不断得到发展。五、荧光和磷光的产生在一般温度下,大多数分子处在基态的最低振动能级。处于基态的分子吸收能量(电能、热能、化学能或光能等)后被激发为激发态。激发态是很不稳定的,它将很快地释放出能量又重新跃迁回基态。若分子返回基态时以发射电磁辐射(即光)的形式释放能量,就称为“发光”。如果物质的分子吸收了光能而被激发,跃迁回基态所发射的电磁辐射,称为荧光和磷光。现从分子结构理论来讨论荧光和磷光的产生机理。每个分子中都具有一系列严格分立相隔的能级,称为电子能极,而每个电子能级中又包含有一系列的振动能级和转动能级。分子中电子的运动状态除了电子所处的能级外,还包含有电子的多重态,用M=2S+1表示,S为各电子自旋量子数的代数和,其数值为0或1。根据Pauli不相容原理,分子中同一轨道所占据的两个电子必须具有相反的自旋方向,即自旋配对。若分子中所有电子都是自旋配对的,则S=0,M=1,该分子便处于单重态(或叫单重线),用符号S表示。大多数有机化合物分子的基态都处于单重态。基态分子吸收能量后,若电子在跃迁过程中,不发生自旋方向的变化,这时仍然是M=1,分子处于激发的单重态;如果电子在跃迁过程中伴随着自旋方向的变化,这时分子中便具有两个自旋不配对的电子,即S=1,M=3,分子处于激发的三重态,用符号T表示。图14.1为电子重态示意图。处于分立轨道上的非成对电子,自旋平行要比自旋配对更稳定些(洪特规则),因此在同一激发态中,三重态能级总是比单重态能级略低。图14.2为能级及跃迁示意图,其中S0、S1和S2分别表示分子的基态、第一和第二电子激发的单重态;T1和T2则分别表示分子的第一和第二电子激发的三重态。V=0、1、2、3、…表示基态和激发态的振动能级。图14.1单重态系三重态激发示意图图14.2荧光和磷光体系能级图处于激发态的分子是很不稳定的,它可能通过辐射跃迁和非辐射跃迁的形式去活化(去激发)释放出多余的能量而返回基态。辐射跃迁主要涉及到荧光,延迟荧光或磷光的发射;无辐射跃迁是指以热的形式释放多余的能量,包括振动弛豫、内部转移、系间跨越及外部转移等过程。图14.2表示分子激发和去活化的能量传递过程:1.振动弛豫(Vibrationrelaxation,简写为VR)当分子吸收光辐射(为图14.2中的λ1、λ2)后可能从基态的最低振动能级(V=0)跃迁到激发单重态Sn(如图中S1、S2)的较高振动能级上。然后,在液相或压力足够高的气相中,分子间的碰撞几率很大,分子可能将过剩的振动能量以热的形式传递给周围环境,而自身从激发态的高振动能级跃迁至该电子能级的最低振动能级上,这个过程称为振动弛豫。发生振动弛豫的时间为10-12s数量级。2.内部转移(Internalconversion,简写为IC)当高电子能级中的低振动能级与低电子能级中的高振动能级发生重叠时,常发生电子从高电子能级以无辐射跃迁形式转移至低电子能级。如图14.2中,S2和T2中的低振动能级与S1和T1中的高振动能级重叠,电子可以通过振动能级的重叠从S2跃迁至S1,或