31第一章§2-1柱、锥、台体性质及表面积、体积计算【课前预习】阅读教材P1-7,23-28完成下面填空1.棱柱、棱锥、棱台的本质特征⑴棱柱:①有两个互相平行的面(即底面),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都).⑵棱锥:①有一个面(即底面)是,②其余各面(即侧面)是.⑶棱台:①每条侧棱延长后交于同一点,②两底面是平行且相似的多边形。2.圆柱、圆锥、圆台、球的本质特征⑴圆柱:.⑵圆锥:.⑶圆台:①平行于底面的截面都是圆,②过轴的截面都是全等的等腰梯形,③母线长都相等,每条母线延长后都与轴交于同一点.(4)球:.3.棱柱、棱锥、棱台的展开图与表面积和体积的计算公式(1)直棱柱、正棱锥、正棱台的侧面展开图分别是①若干个小矩形拼成的一个,②若干个,③若干个.(2)表面积及体积公式:4.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式5.球的表面积和体积的计算公式32【课初5分钟】课前完成下列练习,课前5分钟回答下列问题1.下列命题正确的是()(A).有两个面平行,其余各面都是四边形的几何体叫棱柱。(B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱。(C)有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。(D)用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。2.根据下列对于几何体结构特征的描述,说出几何体的名称:(1)由8个面围成,其中两个面是互相平行且全等的六边形,其他面都是全等的矩形。(2)一个等腰三角形绕着底边上的高所在的直线旋转180°形成的封闭曲面所围成的图形。3.五棱台的上下底面均是正五边形,边长分别是6cm和16cm,侧面是全等的等腰梯形,侧棱长是13cm,求它的侧面面积。4.一个气球的半径扩大a倍,它的体积扩大到原来的几倍?强调(笔记):【课中35分钟】边听边练边落实5.如图:右边长方体由左边的平面图形围成的是()(图在教材P8T1(3))336.已知圆台的上下底面半径分别是r,R,且侧面面积等于两底面面积之和,求圆台的母线长。7.如图,将一个长方体沿相邻三个面的对角线截出一个棱锥,求长方体的体积与剩下的几何体的体积的比。8.一个正方体的顶点都在球面上,它的棱长是2cm,求球的体积与表面积。强调(笔记):【课末5分钟】知识整理、理解记忆要点1.2.3.4.【课后15分钟】自主落实,未懂则问1.填空题:(1)正方形边长扩大n倍,其面积扩大倍;长方体棱长扩大n倍,其表面积扩大倍,体积扩大倍。(2)圆半径扩大n倍,其面积扩大倍;球半径扩大n倍,其表面积扩大倍,体积扩大倍。(3)圆柱的底面不变,体积扩大到原来的n倍,则高扩大到原来的倍;反之,高不变,底面半径扩大到原来的倍。342.已知各面均为等边三角形的四面体S-ABC的棱长为1,求它的表面积与体积。3.直角三角形三边长分别是3cm,4cm,5cm,绕着三边旋转一周分别形成三个几何体,求出它们的表面积和体积。互助小组长签名:必修2第一章§2-2投影与三视图【课前预习】阅读教材P11-18完成下面填空1.中心投影、平行投影⑴叫中心投影,⑵叫平行投影,投影线正对着投影面时,叫,否则叫斜投影.2.空间几何体的三视图、直观图平行投影下的正投影包括斜二测法和三视图:(1)三视图的正视图、左视图、俯视图分别是从物体的、、看到的物体轮廓线即正投影(被遮挡的轮廓线要画虚线)。(2)直观图的斜二测画法①在已知图形中取互相垂直的x轴和y轴,两轴相交于O点,画直观图时,把它们画成对应的x′轴与y′轴,两轴交于O′,且使∠x′O′y′=,它们确定的平面表示水平面;②已知图形中平行于x轴或y轴的线段,画成;③已知图形中平行于x轴的线段,在直观图中长度,平行于y轴的线段,长度.【课初5分钟】课前完成下列练习,课前5分钟回答下列问题1.下列三视图对应的几何体中,可以看作不是简单组合体的是().35ABCD2.根据下列描述,说出几何体的结构特征,并画出它的三视图:由五个面围成,其中一个面是正四边形,其余四个面是全等的等腰三角形的几何体。3.下列结论正确的有(1)角的水平放置的直观图一定是角;(2)相等的角在直观图中仍然相等;(3)相等的线段在直观图中仍然相等;(4)若两条线段平行,则在直观图中对应线段仍然平行4.利用斜二测画法得到的结论正确的是(1)三角形的直观图是三角形;(2)平行四边形的直观图是平行四边形;(3)正方形的直观图是正方形;(4)菱形的直观图是菱形强调(笔记):【课中35分钟】边听边练边落实5.画出下列几何体的三视图:366.根据下列三视图,画出对应的几何体:7.用斜二测画法画出水平放置的一角为60°,边长为4cm的菱形的直观图。8.已知正三角形ABC的边长为a,求出正三角形的直观图三角形'''ABC的面积。37强调(笔记):【课末5分钟】知识整理、理解记忆要点1.2.【课后15分钟】自主落实,未懂则问1.一个几何体的三视图如图所示,则该几何体的体积等于().A.483B.443C.84D.1032.已知几何体的三视图如下,画出它们的直观图:3.下列图形表示水平放置图形的直观图,画出它们原来的图形.38互助小组长签名:必修2第二章§2-3平面概念、公理【课前预习】阅读教材P40-43完成下面填空1.平面及画法2.三个公理:公理1:文字语言:符号语言:图形语言:公理2:文字语言:符号语言:图形语言:公理3:文字语言:符号语言:图形语言:注意:公理1的作用:直线在平面上的判定依据;公理2的作用:确定一个平面的依据,用其证明点、线共面;公理3的作用:判定两个平面相交的依据,用其证明点在直线上——两平面的公共点一定在交线上.【课初5分钟】课前完成下列练习,课前5分钟回答下列问题1.下列推断中,错误的是().A.,,,AlABlBlB.,,,AABBABC.,lAlAD.,,,,,ABCABC,且A、B、C不共线,重合2.下列结论中,错误的是()A.经过三点确定一个平面B.经过一条直线和这条直线外一点确定一个平面C.经过两条相交直线确定一个平面D.经过两条平行直线确定一个平面393.用符号表示下列语句,并画出相应的图形:(1)直线a经过平面外的一点M;(2)直线a既在平面内,又在平面内;4.如图,试根据下列要求,把被遮挡的部分改为虚线:(1)AB没有被平面遮挡;(2)AB被平面遮挡强调(笔记):【课中35分钟】边听边练边落实5.如果一条直线与两条平行直线都相交,那么这三条直线是否共面?6.在正方体1111ABCDABCD中,(1)1AA与1CC是否在同一平面内?(2)点1,,BCD是否在同一平面内?(3)画出平面1AC与平面1BCD的交线,平面1ACD与平面1BDC的交线.407.空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,已知EF和GH交于P点,求证:EF、GH、AC三线共点.8.ABC在平面α外,ABP,BCQ,ACR,求证:P,Q,R三点共线.强调(笔记):【课末5分钟】知识整理、理解记忆要点1.2.3.4.【课后15分钟】自主落实,未懂则问1.下列说法中正确的是().A.空间不同的三点确定一个平面B.空间两两相交的三条直线确定一个平面C.空间有三个角为直角的四边形一定是平面图形D.和同一条直线相交的三条平行直线一定在同一平面内2.给出下列说法,其中说法正确的序号依次是.①梯形的四个顶点共面;②三条平行直线共面;41③有三个公共点的两个平面重合;④每两条都相交并且交点全部不同的四条直线共面.3.已知空间四点中无任何三点共线,那么这四点可以确定平面的个数是.4.下面四个叙述语(其中A,B表示点,a表示直线,表示平面)①,,ABAB;②,,ABAB;③,,AaaA;④,,AaAa.其中叙述方式和推理都正确的序号是5.在棱长为a的正方体ABCD-A1B1C1D1中M,N分别是AA1,D1C1的中点,过点D,M,N三点的平面与正方体的下底面A1B1C1D1相交于直线l,(1)画出直线l;(2)设11lABP,求PB1的长;(3)求D1到l的距离.互助小组长签名:必修2第二章§2-4空间直线位置关系【课前预习】阅读教材P44-50完成下面填空1.空间两直线的位置关系和异面直线的概念与画法(1)相交直线:;共面直线平行直线:;异面直线:.(注意:常用平面衬托法画两条异面直线)42(2)已知两条异面直线,ab,经过空间任一点O作直线,把,ab所成的锐角(或直角)叫异面直线,ab所成的角(或夹角).注意:①,ab所成的角的大小与点O的选择无关,为了简便,点O通常取在异面直线的一条上;②异面直线所成的角的范围为,③如果两条异面直线所成的角是直角,则叫两条异面直线垂直,记作ab.2.空间直线和平面的位置关系(1)直线与平面相交:;直线在平面内:;直线与平面平行:.(2)直线在平面外——直线和平面相交或平行,记作aα包括a∩α=A和a∥α3.空间平面与平面的位置关系平面与平面平行:;平面与平面相交:.【课初5分钟】课前完成下列练习,课前5分钟回答下列问题1.分别在两个平面内的两条直线间的位置关系是().A.异面B.平行C.相交D.以上都有可能2.直线l与平面不平行,则().A.l与相交B.lC.l与相交或lD.以上结论都不对3.若两个平面内分别有一条直线,这两条直线互相平行,则这两个平面的公共点个数().A.有限个B.无限个C.没有D.没有或无限个4.如果OA∥''OA,OB∥''OB,那么AOB与'''AOB(大小关系).强调(笔记):【课中35分钟】边听边练边落实5.如图,已知长方体ABCD-A'B'C'D'中,3AB,3AD,'1AA.(1)BC和''AC所成的角是多少度?43(2)'AA和'BC所成的角是多少度?6.下图是正方体平面展开图,在这个正方体中:①BM与ED平行;②CN与BE是异面直线;③CN与BM成60º角;④DM与BN垂直.以上四个说法中,正确说法的序号依次是.7.已知空间四边形ABCD各边长与对角线都相等,求AB和CD所成的角的大小.8.三棱柱ABC—A1B1C1的侧棱垂直底面,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点.若BC=CA=CC1,求BD1与AF1所成的角的余弦值.强调(笔记):EAFBCMND44【课末5分钟】知识整理、理解记忆要点1.2.3.4.【课后15分钟】自主落实,未懂则问1.两条直线a,b分别和异面直线c,d都相交,则直线a,b的位置关系是().A.一定是异面直线B.一定是相交直线C.可能是平行直线D.可能是异面直线,也可能是相交直线2.E、F、G、H是空间四边形ABCD的边AB、BC、CD、DA的中点,(1)EFGH是形;(2)若空间四边形ABCD的对角线AC与BD垂直,则EFGH是形;(3)若空间四边形ABCD的对角线AC与BD相等,则EFGH是形.3.若一条直线与两个平行平面中的一个平面平行,则这条直线与另一平面的位置关系是.4.正方体各面所在平面将空间分成()个部分.A.7B.15C.21D.275.一个平面内不共线的三点到另一个平面的距离相等且不为零,则这两个平面().A.平行B.相交C.平行或垂合D.平行或相交6.正方体AC1中,E,F分别是A1B1,B1C1的中点,求异面直线DB1与EF所成角的大小.45互助小组长签名:必修2第二章§2-5空间平行关系(1)【课前预习】阅读教材P54-57完成下面填空1.直线与平面平行判定定理:(1)定义:,则直线和平面平行.(2)判定定理:,则该直线与此平面平行.图形语言:符号语言为:.2.平面与平面平行判定定理:(1)定义:,则平面和平面平行.(2)判定定理:,则这两个平面平行.图形语言:符号语言为:.【课初5分钟】课前完成下列练习,课前5分钟回答下列问题1.已知直