绿色化学的研究及进展院系:化学与生物科学学院班级:10-1(双语)班姓名:齐买克学号:2010070301231绿色化学的研究及进展摘要:绿色化学,又称为环境无害化学、环境友好化学、清洁化学,是当今国际化学科学研究的前沿课题,其目的是将现有化工生产技术路线从“先污染,后治理”改为“从源头上根除污染”。是利用化学来防止污染的一门科学[1],是一种对环境友好的化学过程,绿色化学对传统化学在诸多方面存在着继承,更存在着巨大的发展和创新。关键词:绿色化学;环境无害化学;环境友好化学;清洁化学绿色化学(GreenChemistry)是20世纪末崛起的一门新兴学科,相对于传统化学,它是未来化学化工发展的主要方向之一。绿色化学即用化学的技术和方法去避免或减少那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂和试剂在生产过程中的使用,同时在生产过程中不产生有毒有害的副产物、废物。绿色化学是当今国际化学学科的研究前沿,是具有明确社会需求和科学目标的新兴交叉学科。从科学观点看,绿色化学是对传统化学思维方式的更新和发展;从环境观点看,是从源头上消除污染;从经济观点看,它合理利用资源和能源,降低生产成本,符合经济可持续发展的要求。1国内外研究现状发展绿色化学技术的思想首先在欧美国家产生。1984年美国环保局提出的“废物最小化”是绿色化学的最初思想。1989年美国环保局又提出了“污染预防”的概念,是绿色化学思想的初步形成。1990年美联邦政府通过了“防止污染行动”的法令,将污染的防止确立为国策,该法案条文中第一次出现了“绿色化学”一词。1995年美国政府设立了“总统绿色化学挑战奖”,从1996年开始,每年对在绿色化学方面做出重要贡献的化学家和企业颁奖,奖励内容包括:(1)变更合成路线奖;(2)改变反应条件奖;(3)设计更安全化学品奖;(4)小企业奖;(5)学术奖。1998年美国成立绿色化学研究所,专门从事化学工业绿色化学研究。2000年,美国化学学会出版了第一本绿色化学教科书。在英国,1999年皇家化学会创办了第一份国际性《绿色化学》杂志,标志着绿色化学成为化学学科的前沿。绿色化学奖于2000年开始颁发,该奖分为3类:一是被称作“JerwoodSalters”(环境奖)的年度学术奖,另2项年度奖用于奖励在技术、产品或服务方面做出成绩的英国公司。日本紧随欧美之后,于1998年设立了“化学技术战略推进机构”,主张确立新的化学技术体系,并于2000年提出“绿色可持续发展化学(GSC)”的概念,即通过包括产品设计、原料选择、制造方法、使用方法及循环利用等技术的革命,保证“人与环境的健康与安全”及“能源和资源的节省”。还制定了新阳光计划,提出了“简单化学”(SimpleChemistry)的概念,即采用最大程度节约能源、资源和减少排放的简化生产工艺过程来实现未来的化学工业过程,指出绿色化学就是化学与可持续发展相结合。绿色化学在我国也逐步受到重视。1995年中科院化学部确定了《绿色化学与技术》的院士咨询课题;1996年召开了“工业生产中绿色化学与技术”研讨会;1997年国家自然科学基金会与中国石油化工集团联合资助“九五”重大基础研究项目“环境友好石油化工催化化学与化学反应工程”;香山科学会议以“可持续发展问题对科学的挑战———绿色化学”为主题召开了第72次学术研讨会;1998年在合肥举办了第一届国际绿色化学高级研讨会;2000年国家科技部和经贸委批准在天津建立“北方环保产业基地”,绿色化学科研中心与科技专辑也相继出现。但是,我国的绿色化学与发达国家相比还存在较大差距,我们必须高度重视,抓住机遇,推动我国环境技术不断创新发展,以适应国际大趋势的要求。2绿色化学的发展方向绿色化学是依靠科技进步,创造出单位产品产污系数最低,资源消耗最小的先进工艺技术;从化学反应的根本上减少污染,而不是对“三废”等进行处理的环保局部性终端治理技术。2.1开发原子经济性反应1991年,美国斯坦福大学化学教授Trost首次提出了原子经济性(Atomeconomy)概念,即原料分子中究竟有百分之几的原子转化成了产物。理想的原子经济反应是原料分子中的原子百分之百地转变成产物,而不产生副产物或废物,实现废物的“零排放”(Zeroemission)。原子经济性反应有利于资源利用和环境保护。对于大宗基本有机原料的生产而言,选择原子经济反应十分重要。目前,在基本有机原料的生产中,有的已采用原子经济反应,如丙烯氢甲酰化制丁醛、甲醇羰基化制乙酸、乙烯或丙烯的聚合、丁二烯和氢氰酸合成己二腈等。另外,有的基本有机原料的生产所采用的反应,已由二步反应,改为一步的原子经济反应。如环氧乙烷的生产,原来通过氯醇法二步制备;研制出银催化剂后,改为乙烯直接氧化合成环氧乙烷的原子经济反应。近年来,开发新的原子经济反应已成为绿色化学研究的热点之一。2.2采用无毒、无害的原料在现有化工生产中,不可避免地要用到一些有毒有害的原料,如剧毒的光气、氢氰酸和有害的甲醛、环氧乙烷等,严重地污染环境,危害人类健康和社区安全。采用无毒无害原料替代它们来生产各种化工产品是绿色化学的重要任务之一。在替代剧毒的光气作原料生产有机化工原料方面,有报道称工业上已开发成功一种由胺类和二氧化碳生产异氰酸酯的新技术。在特殊的反应体系中采用一氧化碳直接羰化有机胺生产异氰酸酯的工业化技术也已开发成功。Tundo报道了用二氧化碳代替光气生产碳酸二甲酯的新方法。Komiya研究开发了在固态熔融的状态下,采用双酚A和碳酸二甲酯聚合生产聚碳酸酯的新技术,它取代了常规的光气合成路线,并同时实现了两个绿色化学目标:一是不使用有毒有害的原料;二是由于反应在熔融状态下进行,不使用可疑的致癌物———甲基氯化物作为溶剂。关于替代剧毒氢氰酸原料,Monsanto公司从无毒无害的二乙醇胺原料出发,经催化脱氢,开发了安全生产氨基二乙酸钠的工艺,改变了过去以氨、甲醛和氢氰酸为原料的二步合成路线,并因此获得了1996年美国总统绿色化学挑战奖中的变更合成路线奖。另外,国外还开发了由异丁烯生产甲基丙烯酸甲酯的新合成路线,取代了以丙酮和氢氰酸为原料的丙酮氰醇法[2]2.3采用无毒、无害的催化剂目前烃类的烷基反应一般使用氢氟酸、硫酸、三氯化铝等液体酸作催化剂,这些催化剂的共同缺点是对设备的腐蚀严重、危害人身、产生废渣、污染环境。为此,国内外研究人员正从分子筛、杂多酸、超强酸等新催化材料中大力开发固体酸烷基化催化剂。其中采用新型分子筛催化剂的乙苯液相烃化技术引人注目[3]种催化剂选择性高,催化剂寿命长,且乙苯回收率超过99.6%。还有一种生产线性烷基苯的固体酸催化剂替代氢氟酸催化剂[4]了生产环境,现已工业化。今后在固体酸催化剂的研究开发中,还应进一步提高催化剂的选择性,以降低产品中杂质的含量;提高催化剂的稳定性,以延长催化剂的寿命。2.4采用无毒无害的溶剂或不使用溶剂一般与化学制品有关的污染物不仅与原料、产品有关,也与制造过程中使用的溶剂有关。当前广泛使用的溶剂主要是挥发性的有机物,其中有些有机物会引起地面臭氧层的形成,有的会引起水源污染,因此,要限制这类物质的使用。采用无毒无害的溶剂代替挥发性的有机物已成为绿色化学研究的方向。在过去的20年中,研究人员对超临界流体进行了大量研究,并在诸如临界现象、溶解度和溶剂团簇等问题上取得了重大进展。水是无毒无害的廉价溶剂,用水作溶剂具有其独特的优越性[5]rieco等研究了在水相中、室温下的DielsAlder反应,结果发现水相中的反应比有机溶剂中的反应产率高。超临界CO2(T=304K,Pc=7.4MPa)作为溶剂的研究,近年来有了很大的进展。超临界CO2无毒、不可燃、价廉,可使许多反应的速度加快和(或)选择性提高,因此是一种优秀的绿色化学溶剂[6]另外,“离子液体”作为溶剂代替挥发性的有机物已成为绿色化学的重要研究方向。2.5研制环境友好产品绿色化学研制环境友好产品,就是为了消除污染环境产品的负面影响。Rohmhaas公司成功开发了一种环境友好的海洋生物防垢剂,从而获得美国总统绿色化学挑战奖项中的设计更安全的化学品奖。Donlar公司由于成功开发了2个高效工艺合成热聚天冬氨酸,也获得了美国总统绿色化学挑战奖项中的小企业奖。在环境友好机动车燃料方面,已逐步推广使用液化石油气、压缩燃气、甲醇和乙醇等醇类燃料,以及太阳能和氢能等,减少了由汽车尾气中的一氧化碳以及烃类引发的臭氧和光化学烟雾等对空气的污染。此外,保护大气臭氧层的氟氯烃代用品和防止“白色污染”的生物降解塑料也在使用。2.6物理方法促进化学反应光、电、热等是引发和促进有机反应的有效手段,是绿色化学的方向之一。近年来,微波促进化学反应的研究已取得很大进展。利用超声波的空化作用,可提高许多化学反应的反应速度,改善目的产物的选择性,改善催化剂的表面形态,提高催化活性组分在载体上的分散性等。2.7计算机辅助的绿色化学设计计算机技术的发展应用,尤其是分子结构与性能数据库的建立以及分子模拟技术的发展,使人们在化学分子设计、合成统计、实验控制与模拟中有了得力的助手和工具,避免了盲目的实验探索,减少了能源和材料浪费以及由此造成的对环境的污染,从而按照绿色化学的既定目标,研制并生产出各种化学品。2.8培养绿色化学人才百年大计,教育为本。欲发展21世纪的绿色化学必须立足于教育,培养出以绿色化学为观念的化学家和化学工艺等方面的专家。因此,与教育相结合也是绿色化学应注意的一个发展方向。3研究领域上的继承和发展传统化学的研究囿于对化学过程的阐释和对物质结构的探究。绿色化学则跳出了这个思维的狭隘的圈子,引导化学工作者去关心环境、保护环境、改善环境。3.1传统化学的研究领域和目标传统化学注重对微观粒子运动的研究,利用热力学、动力学和物理学等相关学科的最新发现和手段,从分子和原子的水平去研究化学过程、物质结构、物质转化的条件。它也进行宏观探索--研究物质的理化性质、结构与性质的关系等[3]。如在A-B这样一个化学转化过程中,A是始态,B是终态。当物质A向物质B转化的各种条件、中间态已被研究透彻后,一旦该反应过程在生产中和经济上可行,传统化学的任务也就完成了。传统化学实际上要么是为生产而化学,要么是为化学(研究)而化学,很少甚至没有为环境而化学。可见传统化学的思路是直线型,缺少系统地对环境、社会、人类发展的全面考虑。3.2绿色化学的研究领域和目标从微观到宏观,微观、宏观相结合解决问题是绿色化学的思维特点。绿色化学除了研究微观粒子运动变化的规律外,更看重其对宏观过程和环境的影响。它把生产过程放到一个与其紧密相关的局部环境乃至全球中去,构成一个物质流的完整而封闭的工业生态系统,从工业代谢、产品的全生命周期评价、区域产业生态系统建设三个方面着手研究,试图实现物质和能量的循环利用和工业的持续发展。因此,在绿色化学中,研究A-B这个化学过程的实现途径还仅仅是研究的开始;A-B只是化工过程的始态,终态是B被利用后回到环境的消纳过程以及重新回到可为下一个生产周期利用的A的过程。因此绿色化学的使命决定了它必须将化学品的生产置于封闭体系中去,研究如何利用可更新的原料和可再生的能源,生产出对环境最友好、生产过程最清洁、产品最容易回归自然的产品[4]。绿色催化、超临界流体、生物化学工程、辐射加工、等离子体等绿色技术在这样的思维方式的指引下,已呈现出蓬勃发展的势头。4我国绿色化学的活动近年来,我国在绿色化学方面的活动也逐渐活跃.1995年中国科学院化学部确定了《绿色化学与技术》的院士咨询课题;1996年召开了“工业生产中绿色化学与技术”研讨会,并出版了《绿色化学与技术研讨会学术报告汇编》;1997年国家自然科学基金委员与中国石油化工集团公司联合立项资助了“九五”重大基础研究项目“环境友好石油化工催化化学与化学反应工程”,中国科技大学绿色科技与开发中心在该校举行了专题讨论会.并出版了“当前绿色科技中的一些重大问题”的论文集,香山科学会议以“可持续发展问题对科学的挑战一一绿色科学”为主题召开了第72次学术讨论会;1998年在合肥举办