语音信号的处理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、问题的提出:数字语音是信号的一种,我们处理数字语音信号,也就是对一种信号的处理,那信号是什么呢?信号是传递信息的函数。离散时间信号%26mdash;%26mdash;序列%26mdash;%26mdash;可以用图形来表示。按信号特点的不同,信号可表示成一个或几个独立变量的函数。例如,图像信号就是空间位置(二元变量)的亮度函数。一维变量可以是时间,也可以是其他参量,习惯上将其看成时间。信号有以下几种:(1)连续时间信号:在连续时间范围内定义的信号,但信号的幅值可以是连续数值,也可以是离散数值。当幅值为连续这一特点情况下又常称为模拟信号。实际上连续时间信号与模拟信号常常通用,用以说明同一信号。(2)离时间信号:时间为离散变量的信号,即独立变量时间被量化了。而幅度仍是连续变化的。(3)数字信号:时间离散而幅度量化的信号。语音信号是基于时间轴上的一维数字信号,在这里主要是对语音信号进行频域上的分析。在信号分析中,频域往往包含了更多的信息。对于频域来说,大概有8种波形可以让我们分析:矩形方波,锯齿波,梯形波,临界阻尼指数脉冲波形,三角波,余旋波,余旋平方波,高斯波。对于各种波形,我们都可以用一种方法来分析,就是傅立叶变换:将时域的波形转化到频域来分析。于是,本课题就从频域的角度对信号进行分析,并通过分析频谱来设计出合适的滤波器。当然,这些过程的实现都是在MATLAB软件上进行的,MATLAB软件在数字信号处理上发挥了相当大的优势。二、设计方案:利用MATLAB中的wavread命令来读入(采集)语音信号,将它赋值给某一向量。再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波。对于波形图与频谱图(包括滤波前后的对比图)都可以用MATLAB画出。我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。选择设计此方案,是对数字信号处理的一次实践。在数字信号处理的课程学习过程中,我们过多的是理论学习,几乎没有进行实践方面的运用。这个课题正好是对数字语音处理的一次有利实践,而且语音处理也可以说是信号处理在实际应用中很大众化的一方面。这个方案用到的软件也是在数字信号处理中非常通用的一个软件%26mdash;%26mdash;MATLAB软件。所以这个课题的设计过程也是一次数字信号处理在MATLAB中应用的学习过程。课题用到了较多的MATLAB语句,而由于课题研究范围所限,真正与数字信号有关的命令函数却并不多。三、主体部分:(一)、语音的录入与打开:[y,fs,bits]=wavread('Blip',[N1N2]);用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits表示采样位数。[N1N2]表示读取从N1点到N2点的值(若只有一个N的点则表示读取前N点的采样值)。sound(x,fs,bits);用于对声音的回放。向量y则就代表了一个信号(也即一个复杂的%26ldquo;函数表达式%26rdquo;)也就是说可以像处理一个信号表达式一样处理这个声音信号。FFT的MATLAB实现在MATLAB的信号处理工具箱中函数FFT和IFFT用于快速傅立叶变换和逆变换。下面介绍这些函数。函数FFT用于序列快速傅立叶变换。函数的一种调用格式为y=fft(x)其中,x是序列,y是序列的FFT,x可以为一向量或矩阵,若x为一向量,y是x的FFT。且和x相同长度。若x为一矩阵,则y是对矩阵的每一列向量进行FFT。如果x长度是2的幂次方,函数fft执行高速基-2FFT算法;否则fft执行一种混合基的离散傅立叶变换算法,计算速度较慢。函数FFT的另一种调用格式为y=fft(x,N)式中,x,y意义同前,N为正整数。函数执行N点的FFT。若x为向量且长度小于N,则函数将x补零至长度N。若向量x的长度大于N,则函数截短x使之长度为N。若x为矩阵,按相同方法对x进行处理。经函数fft求得的序列y一般是复序列,通常要求其幅值和相位。MATLAB提供求复数的幅值和相位函数:abs,angle,这些函数一般和FFT同时使用。函数abs(x)用于计算复向量x的幅值,函数angle(x)用于计算复向量的相角,介于和之间,以弧度表示。函数unwrap(p)用于展开弧度相位角p,当相位角绝对变化超过时,函数把它扩展至。用MATLAB工具箱函数fft进行频谱分析时需注意:(1)函数fft返回值y的数据结构对称性若已知序列x=[4,3,2,6,7,8,9,0],求X(k)=DFT[x(n)]。利用函数fft计算,用MATLAB编程如下:N=8;n=0:N-1;xn=[43267890]';XK=fft(xn)结果为:XK=39.0000-10.7782+6.2929i0-5.0000i4.7782-7.7071i5.00004.7782+7.7071i0+5.0000i-10.7782-6.2929i由程序运行所得结果可见,X(k)和x(n)的维数相同,共有8个元素。X(k)的第一行元素对应频率值为0,第五行元素对应频率值为Nyquist频率,即标准频率为1.因此第一行至第五行对应的标准频率为0~1。而第五行至第八行对应的是负频率,其X(k)值是以Nyquist频率为轴对称。(注:通常表示为Nyquist频率外扩展,标以正值。)一般而言,对于N点的x(n)序列的FFT是N点的复数序列,其点n=N/2+1对应Nyquist频率,作频谱分析时仅取序列X(k)的前一半,即前N/2点即可。X(k)的后一半序列和前一半序列时对称的。(2)频率计算若N点序列x(n)(n=0,1,…,N-1)是在采样频率下获得的。它的FFT也是N点序列,即X(k)(k=0,1,2,…,N-1),则第k点所对应实际频率值为f=k*f/N.(3)作FFT分析时,幅值大小与FFT选择点数有关,但不影响分析结果。2、设计内容:(1)下面的一段程序是语音信号在MATLAB中的最简单表现,它实现了语音的读入打开,以及绘出了语音信号的波形频谱图。[x,fs,bits]=wavread('ding.wav',[10245120]);sound(x,fs,bits);X=fft(x,4096);magX=abs(X);angX=angle(X);subplot(221);plot(x);title('原始信号波形');subplot(222);plot(X);title('原始信号频谱');subplot(223);plot(magX);title('原始信号幅值');subplot(224);plot(angX);title('原始信号相位');程序运行可以听到声音,得到的图形为:(2)定点分析:已知一个语音信号,数据采样频率为100Hz,试分别绘制N=128点DFT的幅频图和N=1024点DFT幅频图。编程如下:x=wavread('ding.wav');sound(x);fs=100;N=128;y=fft(x,N);magy=abs(y);f=(0:length(y)-1)'*fs/length(y);subplot(221);plot(f,magy);xlabel('频率(Hz)');ylabel('幅值');title('N=128(a)');gridsubplot(222);plot(f(1:N/2),magy(1:N/2));xlabel('频率(Hz)');ylabel('幅值');title('N=128(b)');gridfs=100;N=1024;y=fft(x,N);magy=abs(y);f=(0:length(y)-1)'*fs/length(y);subplot(223);plot(f,magy);xlabel('频率(Hz)');ylabel('幅值');title('N=1024(c)');gridsubplot(224);plot(f(1:N/2),magy(1:N/2));xlabel('频率(Hz)');ylabel('幅值');title('N=1024(d)');grid运行结果如图:上图(a)、(b)为N=128点幅频谱图,(c)、(d)为N=1024点幅频谱图。由于采样频率f=100Hz,故Nyquist频率为50Hz。(a)、(c)是0~100Hz频谱图,(b)、(d)是0~50Hz频谱图。由(a)或(c)可见,整个频谱图是以Nyquist频率为轴对称的。因此利用fft对信号作频谱分析,只要考察0~Nyquist频率(采样频率一半)范围的幅频特性。比较(a)和(c)或(b)和(d)可见,幅值大小与fft选用点数N有关,但只要点数N足够不影响研究结果。从上图幅频谱可见,信号中包括15Hz和40Hz的正弦分量。(3)若信号长度T=25.6s,即抽样后x(n)点数为T/Ts=256,所得频率分辨率为Hz,以此观察数据长度N的变化对DTFT分辨率的影响:编程如下:[x,fs,bits]=wavread('ding.wav');N=256;f=0:fs/N:fs/2-1/N;X=fft(x);X=abs(X);subplot(211)plot(f(45:60),X(45:60));gridxlabel('Hz'),ylabel('|H(ejw)|')%数据长度N扩大4倍后观察信号频谱N=N*4;f=0:fs/N:fs/2-1/N;X=fft(x);X=abs(X);subplot(212)plot(f(45*4:4*60),X(4*45:4*60));gridxlabel('Hz'),ylabel('|H(ejw)|')结果如图:(三)、滤波器设计:1、相关原理:设计数字滤波器的任务就是寻求一个因果稳定的线性时不变系统,并使系统函数H(z)具有指定的频率特性。数字滤波器从实现的网络结构或者从单位冲激响应分类,可以分成无限长单位冲激响应(IIR)数字滤波器和有限长单位冲激响应(FIR)数字滤波器。数字滤波器频率响应的三个参数:(1)幅度平方响应:(2)相位响应其中,相位响应(3)群时延响应IIR数字滤波器:IIR数字滤波器的系统函数为的有理分数,即IIR数字滤波器的逼近问题就是求解滤波器的系数和,使得在规定的物理意义上逼近所要求的特性的问题。如果是在s平面上逼近,就得到模拟滤波器,如果是在z平面上逼近,则得到数字滤波器。FIR数字滤波器:设FIR的单位脉冲响应h(n)为实数,长度为N,则其z变换和频率响应分别为按频域采样定理FIR数字滤波器的传输函数H(z)和单位脉冲响应h(n)可由它的N个频域采样值H(k)唯一确定。MATLAB中提供了几个函数,分别用于实现IIR滤波器和FIR滤波器。(1)卷积函数conv卷积函数conv的调用格式为c=conv(a,b)该格式可以计算两向量a和b的卷积,可以直接用于对有限长信号采用FIR滤波器的滤波。(2)函数filter函数filter的调用格式为y=filter(b,a,x)该格式采用数字滤波器对数据进行滤波,既可以用于IIR滤波器,也可以用于FIR滤波器。其中向量b和a分别表示系统函数的分子、分母多项式的系数,若a=1,此时表示FIR滤波器,否则就是IIR滤波器。该函数是利用给出的向量b和a,对x中的数据进行滤波,结果放入向量y。(3)函数fftfilt函数fftfilt的调用格式为y=fftfilt(b,x)该格式是利用基于FFT的重叠相加法对数据进行滤波,这种频域滤波技术只对FIR滤波器有效。该函数是通过向量b描述的滤波器对x数据进行滤波。关于用butter函数求系统函数分子与分母系数的几种形式。[b,a]=butter(N,wc,'high'):设计N阶高通滤波器,wc为它的3dB边缘频率,以为单位,故。[b,a]=butter(N,wc):当wc为具有两个元素的矢量wc=[w1,w2]时,它设计2N阶带通滤波器,3dB通带为,w的单位为。[b,a]=butter(N,wc,'stop'):若wc=[w1,w2],则它设计2N阶带阻滤波器,3dB通带为,

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功