电催化水还原催化剂的研究进展

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

电催化水还原催化剂的研究进展12内容框架研究背景电催化水还原的基本原理金属及合金催化剂过渡金属化合物催化剂总结与展望参考文献3研究背景电催化水还原催化剂——Pt族金属:储量稀少,价格昂贵。XiuminLiandGuoqingGuanetal.J.Mater.Chem.A,2016,4,11973–12000;PeterC.K.VesborgandThomasF.JaramilloRSCAdv.,2012,2,7933–7947;1800:NicholsonandCarlisle电催化水还原的基本原理Butler-Volmer方程:η0.005V时η0.05V时Tafel斜率MinZengandYanguangLi.J.Mater.Chem.A,2015,3,14942–14962;孙世刚等厦门大学出版社物理化学(下),P340-P347;电催化水还原的基本原理酸性条件下:碱性条件下:Tafel斜率118mVperdecade39mVperdecade29.5mVperdecade决速步骤VolmerreactionHeyrovskyreactionTafelreactionXiuminLiandGuoqingGuanetal.J.Mater.Chem.A,2016,4,11973–12000金属及合金催化剂—降低贵金属用量在合适载体上覆盖单层贵金属原子RelationshipbetweencostofPtandoverlayerthicknessforaplanarcatalystconfiguration.HERexchangecurrentdensity(i0)asafunctionofPtcoverageonWCthinfilm.DanielV.EspositoandJingguangG.ChenEnergyEnviron.Sci.,2011,4,3900–3912;DanielV.EspositoandandJingguangG.Chenetal.J.Am.Chem.Soc.2012,134,3025−3033;YagyaN.RegmiandBrianM.Leonardetal.J.Mater.Chem.A,2015,3,10085–10091;Pt,Pd,orAuonWC,W2CorMo2C.0.5MH2SO40.1MHClO4金属及合金催化剂—降低贵金属用量贵金属与其他过渡金属形成合金Computationalhigh-throughputscreeningfor|ΔGH|on256puremetalsandsurfacealloys.Therowsindicatetheidentityofthepuremetalsubstrates,andthecolumnsindicatetheidentityofthesoluteembeddedinthesurfacelayerofthesubstrate.HydrogenevolutionaftereachstageofBiPtsurfacealloysynthesisonafluorine-dopedtin-oxidesubstrate.(1)Ptfilmafterdepositionandanneal(2)immediatelyafterBiUPD(3)aftersecondannealtoformtheBiPtsurfacealloy.Theinsetrepresentsacontrolsample—PtfilmwithoutBi—afterfirstandsecondanneals.Currentdensitiesarenormalizedtothesurfaceareaoftheinitial,purePtsample,determinedbyHUPD.JeffGreeleyandJensK.Norskovetal.Nat.Mater.2006,5,909-913;稳定性筛选:稳定化自由能金属及合金催化剂—过渡金属替代碱性条件下水还原用Ni,不足:催化活性不够高,逐渐失活。I.ArulRajandK.I.VasuJ.Appl.Electrochem.,1990,20,32–38;I.A.RajandK.I.Vasu,J.Appl.Electrochem.,1992,22,471–477;J.R.McKone,B.F.Sadtler,C.A.Werlang,N.S.LewisandH.B.Gray,ACSCatal.,2013,3,166–169;Ni-Mo-Fe:longtermstabilityandtolerancetoelectrochemicalcorrosionNi-Monanopowders:η@10mA*cm-2100mV1MNaOHElectrolyticcodeposition金属及合金催化剂—功能材料杂化碱性条件下水解离较慢:氧化物或者氢氧化物促进水解离。R.SubbaramanandN.M.Markovicetal.Science,2011,334,1256–1260;N.DanilovicandN.M.Markovicetal.Angew.Chem.2012,124,12663–12666;M.Gong,W.ZhouandH.J.Dai,Nat.Commun.,2014,5,4695;过渡金属化合物催化剂过渡金属硫族化物过渡金属碳化物和氮化物过渡金属磷化物过渡金属硫族化物层状结构MX2:M=Mo,W;X=S,Se,Te;FengmeiWangandJunHeetal.Nanoscale,2015,7,19764–19788;M.A.LukowskiandS.Jinetal.J.Am.Chem.Soc.,2013,135,10274–10277;更稳定、半导体Li离子插层,溶剂化剥离金属性、HER更好MoS2η@10mA/cm2=187mVη@10mA/cm2320mV过渡金属硫族化物B.HinnemannandJ.K.Norskovetal.J.Am.Chem.Soc.,2005,127,5308–5309;T.F.JaramilloandI.Chorkendorffetal.Science,2007,317,100–102底面无活性,唯硫化的钼边是HER活性位过渡金属硫族化物介孔氧化硅模板:双螺旋二十四面体η@10mA/cm2=150-200mV制造尽可能多的边位以边为终端的竖直排列的MoS2膜j0=2.2*10-6A/cm2,TOF=0.013S-1GO稳定纳米MoS2ηonset=100mV,稳定性好硫脲加入:更多缺陷J.KibsgaardandT.F.Jaramilloetal.Nat.Mater.,2012,11,963–969;D.S.KongandY.Cuietal.NanoLett.,2013,13,1341–1347;Y.G.LiandJ.Daietal.J.Am.Chem.Soc.,2011,133,7296–7299;J.F.XieandYiXieetal.Adv.Mater.,2013,25,5807–5813;过渡金属硫族化物层状结构:WS2,MoSe2,WSe2,MoS2(1−x)Se2x;硫铁矿结构:MX2:M=Fe,Co,Ni;X=S,Se;FengmeiWangandJunHeetal.Nanoscale,2015,7,19764–19788;H.ZhangandX.Sunetal.J.Mater.Chem.A,2015,3,6306–6310;DeshengKongandYiCuietal.EnergyEnviron.Sci.,2013,6,3553–3558;ηonset=61mV,酸碱都稳定。第一周期过渡金属硫族化物过渡金属碳化物和氮化物WC,W2C,andMo2C:类贵金属(Pt)性质。S.T.HuntandY.Rom´an-Leshkovetal.Angew.Chem.,Int.Ed.,2014,53,5131–5136;W.F.ChenandR.R.Adzicetal.Angew.Chem.,Int.Ed.,2012,51,6131–6135;MoN,Mo2N,NiMoNx/C过渡金属磷化物(Fe,Co,Ni,Cu,Mo,W)xP:目前非贵金属基最高效的水还原催化剂之一。P的存在减少了活泼Ni位点,形成适中的键合能力PingLiuandJose´A.RodriguezJ.Am.Chem.Soc.2005,127,14871-14878;过渡金属磷化物三辛基磷(TOP)加热到320℃作为磷源。E.J.PopczunandR.E.Schaaketal.J.Am.Chem.Soc.,2013,135,9267–9270;E.J.PopczunandR.E.Schaaketal.Angew.Chem.,Int.Ed.,2014,53,5427–5430;J.M.McEnaneyandR.E.Schaaketal.Chem.Mater.,2014,26,4826–4831;J.M.McEnaneyandR.E.Schaaketal.Chem.Commun.,2014,50,11026–11028;CoP活性更好,二者在碱性中活性都快速衰减Ni2P:η@20mA/cm2=130mVCoP:η@20mA/cm2=85mVMoP:η@10mA/cm2=90mVWP:η@10mA/cm2=120mV过渡金属磷化物J.Q.TianandX.P.Sunetal.J.Am.Chem.Soc.,2014,136,7587–7590;P.JiangandX.P.Sunetal.Angew.Chem.,Int.Ed.,2014,53,12855–12859;J.TianandX.P.Sunetal.Angew.Chem.,Int.Ed.,2014,53,9577–9581;次亚磷酸钠300℃分解作为磷源。η@10mA/cm2=67mV扩展到FeP和Cu3P的合成1.0MPBS(pH7)1.0MKOH(pH14)pH=0-14范围内较好的稳定性总结与展望电催化水还原催化剂中贵金属仍然是性能最好的催化剂,但是其他替代者已经逐渐缩小了差距,以过渡金属磷化物和Ni基合金最有希望。目前催化剂的稳定性、活性需要进一步提高,同时其制备过程的安全性和便利性也有待提升。大多数水还原催化剂适用于酸性条件下,而几乎所有的水氧化催化剂都只在碱性或中性条件下有效,在耦合水还原和水氧化时会遇到挑战。未来可调变缺陷、无序结构、晶态与非晶态、杂原子掺杂等进一步提升HER活性;与碳基材料杂化提高电荷传输效率;选择合适的OER催化剂与HER催化剂构建杂化体系,提高碱性条件下HER的性能。实用要求:ηonset100mVη@10mA/cm2150mV酸性电解液:过渡金属磷化物碱性电解液:Ni基合金2021参考文献1.XiuminLiandGuoqingGuanetal.J.Mater.Chem.A,2016,4,11973–120002.PeterC.K.VesborgandThomasF.JaramilloRSCAdv.,2012,2,7933–79473.MinZengandYanguangLi.J.Mater.Chem.A,2015,3,14942–149624.孙世刚等厦门大学出版社物理化学(下),P340-P3475.DanielV.EspositoandJingguangG.ChenEnergyEnviron.Sci.,2011,4,3900–39126.DanielV.EspositoandandJingguangG.Chenetal.J.Am.Chem.Soc.2012,134,3025−30337.YagyaN.RegmiandBrianM.Leonardetal.J.Mater.Chem.A,2015,3,10085–100918.JeffGreeleyandJensK.Norskove

1 / 29
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功