一次函数总复习在事物运动变化过程中,变化的量叫变量。不变的量叫常量。变量一般表示为字母,但字母不一定是变量。数值不断变化的量变量数值固定不变的量常量习题:一个大小不断变化的圆的半径为r,它的面积S=πr2,其中变量有______,常量有_____.变量与函数万物皆变量的变化研究变量之间的关系把握运动变化规律函数的概念变量与函数习题:函数是研究()A、常量之间的对应关系的B、常量与变量之间的对应关系的C、变量与常量之间对应关系的D、变量之间的对应关系的函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,对应的y=b,那么b叫做当自变量的值为a时的函数值.变量与函数习题:下列解析式中,y不是x的函数是()A、y+x=0B、|y|=2xC、y=|2x|D、y=2x2+4函数y=x2+5x-6中,当自变量为24时,函数值为____.函数的自变量取值范围:既要考虑函数的数学意义,也要考虑函数的实际意义。任意函数都有自变量取值范围,没有特别指出自变量取值范围的函数默认其数学意义下的自变量取值范围。因此,任意函数都要先考虑它的自变量取值范围。自变量的取值范围长方形的周长为20米,那么它的一边长x的取值范围是___________。用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法.这种式子叫做函数的解析式.可以记为:y=f(x).函数解析式习题:等边三角形的周长为20米,写出腰(y)和底(x)的函数解析式:_________________。函数是两个变量x和y之间的一种对应关系,数学家欧拉在1734年提出一种简便的记法,使用“y=f(x)”来表示y和x的某种对应关系.如对于函数y=4-2x可用f(x)=4-2x来表示,那么当x=3时,y=4-2×3=-2,可表示成f(3)=-2.现若f(x)=3x-2,请求出f(-1)和f(f(-1))的值。对于一个函数,若把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。从这个图象中可以方便地看出当自变量增大时,函数值怎样变化.即函数的增减性。技能要求:能从函数图象中读取信息,完成问题。图象信息(形)图象上点的坐标特点(数)对应关系和变化规律函数的图象对于一个函数,若把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。从这个图象中可以方便地看出当自变量增大时,函数值怎样变化.即函数的增减性。技能要求:能从函数图象中读取信息,完成问题。函数的图象习题:某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3小时后停止生产另行安排工人装箱,若每小时装产品150件,未装箱的产品数量y是时间x的函数,则这个函数的大致图象是()yxOAyxOByxOCyxOD画函数图象的一般步骤:列表、描点、连线,这种画函数图象的方法称为描点法.自变量取值范围不是任意实数的图象要尽量标明曲线端点。端点不在自变量取值范围内,则用空心点表示。函数的图象习题:利用描点法作函数y=x2(1x≤5)的图象。函数通常有三种表达方式:列表法、解析法、图象法当函数的图象是一些离散的点时,用列表法表示更合适判断一个点是否在函数的图象上,通常采用检验法:1、先判断横坐标x是否在自变量取值范围内;2、再将x、y代入函数解析式看等式是否成立。函数的图象正比例函数:y=kx(k是常数,k≠0)其中k叫做比例系数在没有特别给定的情况下,正比例函数的自变量取值范围是任意实数。正比例函数习题:已知正比例函数y=3x|a+2|,则a=_____.已知正比例函数y=(a+3)x|a+2|,则a=_____.在没有特定自变量取值范围的情况下,正比例函数的图象是一条经过原点的直线。可以通过两点法作正比例函数的图象:(0,0)、(1,k)习题:作以下函数的图象:(1)y=3x;(2)y=-3x;(3)y=x/3;(4)y=-x/3.比例系数k,也称为斜率,它决定了直线的倾斜程度。k的绝对值越大,直线越倾斜,与x轴的锐夹角越大;反之则越小。正比例函数习题:如下图可知:k1___k2;k3___k4(填、或=)y=k1x642-2-55xyOy=k2xy=k3x642-2-55xyOy=k4x正比例函数:y=kx比例系数直线形状经过象限增减性k0左低右高一、三递增k0左高右低二、四递减正比例函数习题:正比例函数y=(k-2)x的图象经过二、四象限,则k的取值范围为_________.正比例函数y=(k2-2)x的图象经过二、四象限,则k的取值范围为_________.正比例函数y=(k2+2)x的图象经过二、四象限,则k的取值范围为_________.正比例函数y=-2x,若0≤y3,则自变量的取值范围为____________.直线:y=kx与y=-kx关于y轴对称;它们的斜率的和等于0。直线:y=kx与y=-x/k互相垂直;它们的斜率的积等于–1。正比例函数习题:写出与直线y=2x/3关于y轴对称的直线解析式。习题:写出与直线y=2x/3互相垂直的直线解析式。正比例函数正比例函数y=k1x642-2-55xyOy=k2xk1+k2=0;则两直线关于y轴对称正比例函数正比例函数y=k1x642-2-55xyOy=k2x|k1|=1/|k2|;即k1·k2=-1一次函数:y=kx+b(k是常数,k≠0)其中k叫做斜率在没有特别给定的情况下,一次函数的自变量取值范围是任意实数。一次函数正比例函数是特殊的一次函数,b=0已知函数y=(1-2k)x+k-1.(1)当k____时,这个函数是正比例函数?(2)当k取何值时,这个函数是一次函数?在没有特定自变量取值范围的情况下,一次函数的图象是一条直线。可以通过两点法作正比例函数的图象:(0,b)、(1,k+b)直线与y轴的交点(0,b);与x轴的交点(0,-b/k)一次函数习题:作以下函数的图象:(1)y=3x+2;(2)y=-3x+2;(3)y=x/3-2;(4)y=-x/3-2.直线y=3x+2与y轴的交点为____;与x轴的交点为____.若直线y=(1-2k)x+k-1与y轴的交点为(0,-2),那么它的表达式为:________;若它与x轴的交点为(-3,0),那么它的表达式为:________。一次函数一次函数:y=kx+b比例系数直线形状增减性经过象限k0左低右高递增b0一、二、三b0一、三、四k0左高右低递减b0一、二、四b0二、三、四习题:直线y=-2x+3经过_________象限.若直线y=(k-2)x+2k+3的图象经过二、三、四象限,则k的取值范围为_________.已知直线y=2x+b上两点A(1,y1),B(3,y2)则y1___y2(填、或=).一次函数斜率k决定了直线的倾斜程度。k的绝对值越大,直线越倾斜,与x轴的锐夹角越大;反之则越小。y=k1x+b1642-2-55xyOy=k2x+b2|k1||k2|0;则k1k20一次函数斜率k决定了直线的倾斜程度。k的绝对值越大,直线越倾斜,与x轴的锐夹角越大;反之则越小。|k1||k2|0;则k1k20642-2-55xyOy=k1x+b1y=k2x+b2直线y=kx+b可以看作y=kx向上(b0)或向下(b0)平移|b|个单位长度得到的;直线y=kx+b1可以看作y=kx+b2向上(b1b2)或向下(b1b2)平移|b1-b2|个单位长度得到的.一次函数习题:直线y=-2x向上平移3个单位长度可以得到直线________;向下平移2个单位长度可得直线________。直线y=-2x-3向上平移3个单位长度可得到直线________;向下平移4个单位长度可得直线________。若直线y=kx-3k+1是由直线y=kx+2k-1向上平移3个单位长度所得,则k=______。当k1=k2,b1≠b2时,l1//l2;当k1·k2=-1时,l1⊥l2.已知直线l1:y=k1x+b1与l2:y=k2x+b2当k1+k2=0,b1=b2时,l1与l2关于y轴对称;当k1+k2=0,b1+b2=0时,l1与l2关于x轴对称;一次函数习题:已知直线y=(b2-3)x+2与直线y=2bx-1互相平行,则b=________;已知直线y=(b2-3)x-b+2与直线y=2bx-1互相平行,则b=________。642-2-55xyOk1=k2且b1≠b2;则l1//l2l1:y=k1x+b1l2:y=k2x+b2一次函数642-2-55xyOk1+k2=0且b1=b2,则l1与l2关于y轴对称;l1:y=k1x+b1l2:y=k2x+b2一次函数642-2-55xyOk1+k2=0且b1+b2=0,则l1与l2关于x轴对称;l1:y=k1x+b1l2:y=k2x+b2一次函数642-2-55xyO|k1|=1/|k2|;即k1·k2=-1l1:y=k1x+b1l2:y=k2x+b2一次函数(待定系数法)满足条件的两定点(x1,y1)与(x2,y2)函数解析式y=kx+b一次函数的图象直线l选取解出画出选取一次函数(两点法)1.设函数解析式:y=kx+b(或y=kx)2.代入已知点坐标列二元一次方程组(或一元一次方程)3.解方程组(或方程)确定系数k和b(或k)待定系数法习题:若点(-1,1)在函数y=kx的图象上则k=___;在一次函数y=kx-3中,当x=3时,y=6,则k=___;一次函数y=3x-b过(-2,1),则b=___。已知一次函数的图象经过点(1,-1)和点(-1,2)。求这个函数的解析式。已知一次函数y=kx+b中,当x=1时,y=3,当x=-1时,y=7。求这个函数的解析式。且求当x=3时,y的值。如图,求直线的解析式:yxO34已知y-1与x+3是正比例函数且图象经过(0,2),求y和x的函数解析式。直线与x轴相交于(-3,0),与x轴、y轴围成的三角形的面积是9,求直线的函数解析式。待定系数法已知直线上两点(x1,y1)和(x2,y2),则k=习题:已知一次函数图象经过点(3,-2)和点(-2,1),则k=____.已知一次函数图象经过点(2a+1,-2)和点(-3,a),则k=____.y1-y2x1-x2已知一次函数图象经过点(m+1,-2n)和点(n,-m),则k=____.已知平面直角坐标系中两点的水平距离为3,竖直距离为4,过两点的直线过二、三、四象限,与y轴交点到原点的距离为2,则直线的解析式为:________.分段函数分段函数的一般形式(只针对一次函数)y=k1x+b1(x≤a)只涉及一次函数的分段函数的图象一般是两条射线y=k2x+b2(xa)(a为常数)xyaO分段函数习题:已知分段函数y=3(x-1)y=2x+1(x≥-1)(1)作函数图象;(2)当x=-2时,y=____;当x=-1时,y=____;当x=2时,y=____;实际问题一次函数问题设变量找对应关系一次函数问题的解实际问题的解解释实际意义利用一次函数解决实际问题:选择方案方案选择一般是利用分段函数选择最优方案以解决实际问题。利用一次函数解决实际问题:选择方案选择方案方案选择中,经常要涉及到最值问题。通过函数图象可以直观看到函数的最大值或最小值。如果一次函数y=kx+b的存在自变量取值范围(a≤x≤b),那么函数存在最大值和最小值。当k0时,x=b的函数值最大;x=a的函数值最小当k0时,x=a的函数值最大;x=b的函数值最小在分段函数中,可以通过比较每段函数的最大或最小值,来确定整个函数的最值。选择方案函数与方程、不等式一次函数上点的坐标是二元一次方程的解集;二元一次方程y-kx=b的解是一次函数y=kx+b图象上点的坐标。习题:下列空中填(“一定”,“可能”或“一定不”)方程2y+3x=4的解组成的坐标_______在直线y
本文标题:一次函数总复习课件
链接地址:https://www.777doc.com/doc-2074621 .html