课时训练简单几何体的结构三视图和直观图(北师大版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

A级基础达标演练(时间:40分钟满分:60分)一、选择题(每小题5分,共25分)1.(2011·新余模拟)以下关于几何体的三视图的论述中,正确的是().A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆解析画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆.答案A2.已知一个几何体的三视图如图所示,则此几何体的组成为().A.上面为棱台,下面为棱柱B.上面为圆台,下面为棱柱C.上面为圆台,下面为圆柱D.上面为棱台,下面为圆柱解析结合图形分析知上面为圆台,下面为圆柱.答案C3.(2012·福州模拟)下列几何体各自的三视图中,有且仅有两个视图相同的是().A.①②B.①③C.①④D.②④解析正方体的三视图都是正方形,不合题意;圆锥的主视图和左视图都是等腰三角形,俯视图是圆,符合题意;三棱台的主视图和左视图、俯视图各不相同,不合题意;正四棱锥的主视图和左视图都是三角形,而俯视图是正方形,符合题意,所以②④正确.答案D4.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于().A.24a2B.22a2C.22a2D.223a2解析根据斜二测画法画平面图形的直观图的规则,可以得出一个平面图形的面积S与它的直观图的面积S′之间的关系是S′=24S,本题中直观图的面积为a2,所以原平面四边形的面积等于a224=22a2.故选B.答案B5.(2011·江西)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的左视图为().解析被截去的四棱锥的三条可见侧棱中有两条为长方体的面对角线,它们在右侧面上的投影与右侧面(长方形)的两条边重合,另一条为体对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图,只有选项D符合.答案D二、填空题(每小题4分,共12分)6.(2012·南昌模拟)利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的个数是________.解析由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案17.(2010·北京改编)一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为________.解析由三视图中的正(主)、侧(左)视图得到几何体的直观图如图所示,所以该几何体的俯视图为③.答案③8.如图所示,E、F分别是正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是________.(要求:把可能的图的序号都填上)解析由正投影的定义,四边形BFD1E在面AA1D1D与面BB1C1C上的正投影是图③;其在面ABB1A1与面DCC1D1上的正投影是图②;其在面ABCD与面A1B1C1D1上的正投影也是②,故①④错误.答案②③三、解答题(共23分)9.(11分)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm,求圆台的母线长.解抓住轴截面,利用相似比,由底面积之比为1∶16,设半径分别为r、4r.设圆台的母线长为l,截得圆台的上、下底面半径分别为r、4r.根据相似三角形的性质得33+l=r4r,解得l=9.所以,圆台的母线长为9cm.10.(12分)(2012·银川调研)正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?解如图所示,正四棱锥S-ABCD中,高OS=3,侧棱SA=SB=SC=SD=7,在Rt△SOA中,OA=SA2-OS2=2,∴AC=4.∴AB=BC=CD=DA=22.作OE⊥AB于E,则E为AB中点.连接SE,则SE即为斜高,在Rt△SOE中,∵OE=12BC=2,SO=3,∴SE=5,即侧面上的斜高为5.B级综合创新备选(时间:30分钟满分:40分)一、选择题(每小题5分,共10分)1.如下图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可能是().解析当俯视图为A中正方形时,几何体为边长为1的正方体,体积为1;当俯视图为B中圆时,几何体为底面半径为12,高为1的圆柱,体积为π4;当俯视图为C中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为12.答案C2.(2012·长春模拟)已知三棱锥的主视图与俯视图如图所示,俯视图是边长为2的正三角形,那么该三棱锥的左视图可能为().解析这个空间几何体的直观图如图所示,由题知这个空间几何体的左视图的底面边长是3,故其左视图只可能是选项B中的图形.答案B二、填空题(每小题4分,共8分)3.(★)(2010·辽宁)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为________.解析(构造法)由主视图和俯视图可知几何体是正方体切割后的一部分(四棱锥C1-ABCD),还原在正方体中,如图所示.多面体最长的一条棱即为正方体的体对角线,如图即AC1.由正方体棱长AB=2知最长棱AC1的长为23.答案23【点评】构造正方体,本题就很容易得出结论,此种方法在立体几何问题中较为常见,把抽象问题转化为直观问题解决.4.(2011·汕头调研)如图是由大小相同的长方体木块堆成的几何体的三视图,则此几何体共由________块木块堆成.解析根据题意可知,几何体的最底层有4块长方体,第2层有1块长方体,一共5块.答案5三、解答题(共22分)5.(10分)如图是一个几何体的主视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其左视图,并求该平面图形(左视图)的面积.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形(侧视图)的面积.解(1)由该几何体的主视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的左视图,如图.其中AB=AC,AD⊥BC,且BC的长是俯视图正六边形对边间的距离,即BC=3a,AD是正棱锥的高,则AD=3a,所以该平面图形(左视图)的面积为S=12×3a×3a=32a2.6.(12分)(2012·太原模拟)一个正方体内接于高为40cm,底面半径为30cm的圆锥中,求正方体的棱长.解如图所示,过正方体的体对角线作圆锥的轴截面,设正方体的棱长为xcm,则OC=22x,∴22x30=40-x40,解得x=120(3-22),∴正方体的棱长为120(3-22)cm.

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功