贵阳市中考2010年数学试卷一、选择题(共10小题,每小题3分,满分30分)1.﹣5的绝对值是()A.5B.﹣5C.D.﹣2.下列多项式中,能用公式法分解因式的是()A.x2﹣xyB.x2+xyC.x2﹣y2D.x2+y23.据统计,2010年贵阳市参加初中毕业生学业考试的人数约为51000人,将数据51000用科学记数法表示为()A.5.1×105B.0.51×105C.5.1×104D.51×1044.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.5.小明准备参加校运会的跳远比赛,下面是他近期六次跳远的成绩(单位:米):3.6,3.8,4.2,4.0,3.8,4.0.那么这组数据的()A.众数是3.9米B.中位数是3.8米C.极差是0.6米D.平均数是4.0米6.下列式子中,正确的是()A.10<<11B.11<<12C.12<<13D.13<<147.下列调查,适合用普查方式的是()A.了解贵阳市居民的年人均消费B.了解某一天离开贵阳市的人口流量C.了解贵州电视台《百姓关注》栏目的收视率D.了解贵阳市某班学生对“创建全国卫生城市”的知晓率8.如图,AB是⊙O的直径,C是⊙O上的一点,若AC=8,AB=10,OD⊥BC于点D,则BD的长为()A.cmB.3cmC.5cmD.6cm9.一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是()A.x>0B.x<0C.x>2D.x<210.如图,是小华画的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为()A.B.C.D.二、填空题(共5小题,每小题4分,满分20分)11.方程x2+1=2的解是_________.12.在一个不透明的布袋中,有黄色、白色的乒乓球共10个,这些球除颜色外都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中白色球的个数很可能是_________个.13.如图,河岸AD、BC互相平行,桥AB垂直于两岸,从C处看桥的两端A、B,夹角∠BCA=60°,测得BC=7m,则桥长AB=_________m(结果精确到1m).14.若点(﹣2,1)在反比例函数的图象上,则该函数的图象位于第_________象限.15.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…按此规律,那么请你推测第n组应该有种子数是_________粒.三、解答题(共10小题,满分100分)16.先化简:,当b=﹣1时,再从﹣2<a<3的范围内选取一个合适的整数a代入求值.17.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”,图5中四边形ABCD就是一个格点四边形.(1)图中四边形ABCD的面积为_________;(2)在《答题卡》所给的方格纸中画一个格点三角形EFG,使△EFG的面积等于四边形ABCD的面积.18.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(结果精确到0.1m)19.在一副扑克牌中取牌面花色分别为黑桃、红心、方块各一张,洗匀后正面朝下放在桌面上.(1)从这三张牌中随机抽取一张牌,抽到牌面花色为红心的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面花色后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面花色.当两张牌的花色相同时,小王赢;当两张牌面的花色不相同时,小李赢.请你利用树状图或列表法分析该游戏规则对双方是否公平?并说明理由.20.如图,直线与x轴、y轴分别交于A、B两点.(1)将直线AB绕原点O沿逆时针方向旋转90°得到直线A1B1请在《答题卡》所给的图中画出直线A1B1,此时直线AB与A1B1的位置关系为_________(填“平行”或“垂直”);(2)设(1)中的直线AB的函数表达式为y1=k1x+b1,直线A1B1的函数表达式为y2=k2x+b2,则k1•k2=_________.21.《中学生体质健康标准》规定学生体质健康等级标准为:86分及以上为优秀;76分~85分为良好;60分~75分为及格;59分及以下为不及格.某校从九年级学生中随机抽取了10%的学生进行了体质测试,得分情况如下图.(1)在抽取的学生中不及格人数所占的百分比是_________%;(2)小明按以下方法计算出抽取的学生平均得分是:(90+78+66+42)÷4=69.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式;(不必算出结果)(3)若不及格学生的总分恰好等于某一个良好等级学生的分数,请估算出该校九年级学生中优秀等级的人数.22.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数,其图象如图所示.(1)每天的销售数量m(件)与每件的销售价格x(元)的函数表达式是_________.(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式;(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?24.如图,已知AB是⊙O的弦,半径OA=2cm,∠AOB=120°.(1)求tan∠OAB的值;(2)计算S△AOB;(3)⊙O上一动点P从A点出发,沿逆时针方向运动,当S△POA=S△AOB时,求P点所经过的弧长.(不考虑点P与点B重合的情形)25.如图,在直角坐标系中,已知点M0的坐标为(1,0),将线段OM0绕原点O沿逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O沿逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2,如此下去,得到线段OM3,OM4,…,OMn(1)写出点M5的坐标;(2)求△M5OM6的周长;(3)我们规定:把点Mn(xn,yn)(n=0,1,2,3…)的横坐标xn,纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Mn的“绝对坐标”.根据图中点Mn的分布规律,请你猜想点Mn的“绝对坐标”,并写出来.