第五章柴油机主机遥控系统第一节主机遥控系统的基本概念船舶柴油机主机遥控是指离开机旁在驾驶台或集中控制室对主机进行远距离操纵的一种方式。在这种操作方式中,不可能直接利用主机操纵机构本身的手柄或手轮来操纵主机,而必须在操纵部位(驾驶台或集中控制室)发出的操车信号,这就需要在操纵部位与主机的执行机构之间设置一套综合的逻辑控制回路。该回路包括组合逻辑回路、时序逻辑回路、反馈控制回路,以及各种安全保护回路。主机遥控系统是轮机自动化的重要组成部分,是现代化船舶实现无人机舱的必不可少的条件之一。主机遥控不仅能改善轮机人员的工作条件,改善船舶的操纵性能,而且还能提高船舶航行的安全性,以及主机工作的可靠性和经济性。通常情况下,驾驶台遥控的自动化程度比集中控制室的高,在驾驶台遥控主机时,驾驶员可按常规的车中操作方法来操纵主机。这时,主机所需的操作步骤及操作要求均由遥控系统自动实现。而在集中控制室遥控主机时,考虑到操纵主机的是轮机员,故某些操作可以按主机的操作步骤及要求进行,故遥控系统可省掉一些不必要的环节。因此,为了降低造船成本和提高船舶的安全性和可靠性,往往把驾驶台遥控主机设计成全自动遥控系统,而把集中控制室设计成半自动遥控系统。一、主机遥控系统的组成主机遥控系统组成如图5-1-1所示,由图可见,主机遥控系统是由遥控操纵台、遥控装置、测速装置、安全保护装置,以及包括遥控执行机构在内的主机操纵系统五大部分组成。1.遥控操纵台遥控操纵台设置在驾驶室和集控室内,它的主要作用是提供人机对话的界面。遥控操纵台上的主要部件是车钟手柄,人通过车钟手柄向遥控系统发出控制命令,如正车、倒车、停车和转速的设定。显示屏向人们提供遥控系统执行命令的情况、各种参数和状态信号的显示、报警指示、车钟记录以及辅车钟信号的联系。紧急操纵按钮用于发出应急运行、应急停车等命令。操纵部位转换开关用于驾驶室与集控室间的遥控部位选择。2.遥控装置遥控装置是整个遥控系统的控制中心,它根据遥控操纵台给出的指令,测速装置提供的主机转速的大小和方向,位置检测器提供的凸轮轴位置信号等,完成对主机的起动、换向、制动、停油等逻辑程序控制以及转速与负荷控制功能。3.测速装置测速装置用来检测主机的转速、转向,向遥控装置提供主机的运行状态。不论遥控系统中的逻辑程序控制,还是转速与负荷控制,都离不开转速、转向信号。否则遥控系统将失灵或误动作。同时,此信号还送往转速表,指示主机的转速大小和转动方向。4,遥控执行机构与主机操纵系统遥控执行机构与主机操纵系统用来执行遥控装置发出的起动、换向、制动、调整等控制命令。在遥控系统失灵时,可通过机旁操纵装置应急操纵主机。5.安全保护装置安全保护装置用来监视主机运行中的一些重要参数。一旦某个重要参数发生严重越限,自动控制主机减速运行,或迫使主机停车,以保障主机安全。安全保护装置是一个不依赖于遥控装置而相对独立的系统,它不会因为遥控装置出现故障而失去效能。从主机遥控系统的组成示意图看,主机的操纵部位有三处,即驾驶室、集控室和机旁。在同一时刻,只能一个操纵部位起作用。因此系统中要有操纵部位转换开关。图中只画出了集控室与驾驶室之间的转换开关,实际上机舱中也要有转换开关,进行机旁操纵与遥控之间的转换。一般说来,机舱转换到集控室和集控室转换到驾驶台需要有转换条件,而反向转换则不需要转换条件。因此,就操纵而言,机旁的优先级最高,集控室次之,驾驶室的优先级最低。主机的操作部位总体上看有三处,但每一处可能不止一种操纵形式。为了增加操纵的灵活性和可靠性,新型船舶的操纵形式较多:机舱有人工操纵和手动操纵;集控室有全自动遥控和手动或半自动遥控;驾驶室是全自动遥控,操纵场所不仅在驾驶室内,在驾驶室外两侧的船舷旁也分别设置了操纵台,其中包含有控制主机的车钟手柄和控制侧图5-1-1主机遥控系统的组成推器的操纵手柄。在靠离码头时,利用船舷旁的操纵台控制主机,无疑是更安全、更有效。现代船舶的驾驶室遥控都采用单手柄控制,即常规车钟传令和直接控制主机都是由车钟手柄来完成的。在集控室或机旁操纵主机时,车钟手柄只起常规传令车钟的作用。在驾驶室遥控时,车钟手柄位置的改变都是对主机的直接控制。因此,车钟手柄不宜像常规传令车钟那样标有“备车”、“完车”、“定速航行”等挡位,可用带灯按钮代表上述挡位,来实现驾驶室与集控室之间的通讯联系。我们常把主机遥控系统的车钟称为主车钟,而把“备车”、“完车”、“定速航行”等带灯按钮称为辅车钟。二、主机遥控系统的主要功能尽管主机遥控系统种类繁多,结构复杂,但设计这些系统的目的都是为了实现控制主机所应具备的各种功能,而各种主机遥控系统的这些功能是类似的。因此,掌握主要功能对后面实际遥控系统的学习会有很大帮助。主机遥控系统的主要功能包括四个方面,即逻辑程序控制、转速与负荷控制,安全保护与应急操作,以及模拟试验。下面分别进行具体介绍。1.逻辑程序控制1)换向逻辑控制当有动车车令即车钟手柄从停车位置移至正车或倒车位置的某一位置,遥控系统首先进行换向逻辑判别,即判断车令位置与实际凸轮轴的位置是否一致。当车令位置与实际凸轮轴位置不符时,便自动控制主机换向,将主机的凸轮轴换到车令所要求的位置上。换向完成后,遥控系统转入起动逻辑控制(如车令位置与实际凸轮轴位置相符,则省去上述换向过程,直接进入起动逻辑控制)。如在规定的时间内,主机凸轮轴未能换到车令所要求的位置,遥控系统将发出换向失败报警信号,同时禁止起动主机。2)起动逻辑控制换向逻辑控制完成后,遥控系统紧接着进入起动逻辑判断,也就是对起动条件进行鉴别。当满足起动主机所需的各项条件时,控制空气分配器投入工作,打开主起动阀,起动空气将进入主机进行起动,在主机转速达到发火切换转速时,自动完成油气转换(对油气并进的主机可提前供油),停止起动。这时若起动成功,自动转入主机加速程序。3)重复起动程序控制若主机在起动过程中发生点火失败,遥控系统将自动进行第二次起动。若第二次起动又发生点火失败,则自动进行第三次起动。无论第二或第三次中那次起动成功都将自动转入主机加速程序。当出现第三次起动失败时,遥控系统将自动停止起动,同时发出起动失败报警。当故障排除后,需把车钟手柄拉到停车位置,对三次起动失败信号复位,方可对主机进行再起动。4)重起动逻辑控制在应急起动、倒车起动或有重复起动的情况下,为了提高主机起动的成功率,遥控系统将自动增大起动供油量,或者自动地提高起动空气切断转速对主机进行重起动。5)慢转起动逻辑程序当主机停车时间超过规定时间(一般是30min~60min内可调)以后,或在停车期间停过电,再起动主机时,遥控系统将自动控制主机先进入慢转起动,即让主机缓慢转动1~2转,随后再转入正常起动。若慢转起动失败,将发出报警信号并且封锁正常起动。之所以要设置慢转起动,其目的是使主机各主要摩擦面建立起润滑油膜后再转入正常起动,以减少磨损;另一方面当慢转起动失败后,可以检查出主机的故障,避免起动事故发生。6)主机运行中的换向与制动逻辑程序控制当船舶全速航行遇到紧急情况时,若把车钟手柄拉到停车位置,遥控系统会发出停油动作,由于船舶的惯性很大,船舶的滑行距离很长,主机转速也会因为螺旋桨的水涡轮作用而保持相当长的时间,这对紧急避碰来说是极为不利的,为了解决这个问题,现在的主机遥控系统一般都设有主机运行中的换向与制动功能。当主机在正车(或倒车)运行中车钟手柄突然从正车拉到倒车位置(或相反)时,遥控系统将自动执行停油—换向—制动—倒车起动一倒车加速过程。有的主机换向需要有转速限制,即转速降到一定数值才允许换向,而且换向转速分为正常换向转速和应急换向转速(应急换向转速比正常换向转速大)。制动的前提是换向完毕。制动分为能耗制动和强制制动。有的遥控系统只设置强制制动(主要用于大型低速柴油机)。有的遥控系统先进行能耗制动,然后再进行强制制动(主要用于中速柴油机)。所谓能耗制动,是在应急换向完成后,只让空气分配器工作,主起动阀关闭,这时主机是正车转向,而凸轮轴是倒车位置。因此,当某缸活塞上行(压缩冲程)时,空气分配器使此缸气缸起动阀开启,气缸内的气体经气缸起动阀到主起动阀后被截止,使主机起着压缩机作用,消耗其能量,降低其转速,实行能耗制动。能耗制动是主机转速较高且制动力矩较小时的制动方式。而强制制动是让空气分配器工作,且主起动阀开启。此时,高压起动空气在各缸的气缸起动阀前等待,当某缸活塞上行时,空气分配器控制此缸气缸起动阀开启。于是,高压起动空气进入气缸,强行阻止活塞运动,使主机转速迅速下降为零,实行强制制动,当主机转速下降为零后,则按倒车的起动逻辑控制来起动主机,使主机倒转,并按倒车加速程序将主机转速调节到车令设定转速。2.主机的转速与负荷控制1)转速程序控制当对主机进行加速操纵时,应对加速过程的快慢有所限制,转速(或负荷)范围不同对加速过程的限制程度就不同,因此加速过程控制有下列两种形式:(1)发送速率限制;(2)程序负荷(也称负荷程序)。其中发送速率指的是主机在中速区以下的加速控制,加速速率较快。而程序负荷指的是高速区的加速控制,特别强调慢加速。因为在高负荷时加速太快,会使主机超热负荷,严重影响缸套、活塞和缸盖等燃烧室部件的寿命。因此,有了发送速率和程序负荷这种控制功能,驾驶员可按实际情况把车钟手柄扳到任一速度挡,而不必考虑是否会损害主机。当车钟手柄从停车扳到正车(倒车)全速时,主机先进行起动操作,起动阶段完成以后,主机的加速过程就会按预先设定好的加速速率进行加速,当主机定速后,主机转速控制系统就会按设计好的程序负荷继续给主机加速,最后一直到车钟手柄所设定的正车海速转速。由此可见,转速给定值是变化的,而且变化规律是确定的。因此,在主机起动完成到转速稳定这段时间内,主机转速控制系统实际上是在完成一个转速程序控制过程。实际上不仅有加速程序负荷,还有减速程序负荷,只不过减速程序负荷比加速过程快得多,往往被忽略,除遇到应急情况外,主机在从海速降速时进行一段减速程序负荷控制,对延长主机使用寿命和降低故障率都是十分重要的,因此,部分主机转速控制系统还设有减速程序负荷。2)转速一负荷控制主机的转速与负荷控制回路是一个综合控制回路。在正常航行工况下,控制回路主要是通过调速器对主机转速进行定值控制。控制回路的作用就是克服各种扰动,把主机转速控制在车钟手柄所设定的转速上。但是,当船舶在恶劣海况下航行时,螺旋桨可能会频繁露出水面转速升高,若此时仍采用转速定值控制,调速器为了维持主机运行在设定转速上,不得不频繁地大幅度调节主机供油量,这就有可能导致主机超热负荷。一但调速器减油不及时,主机就会发生飞车而使主机超机械负荷。这时,主机转速控制系统常采用负荷控制方式或死区控制方式来保障主机的安全运行。3)转速限制为了保证主机安全、可靠及有效地运行,车令设定的转速值必须符合主机自身特性的要求,因此,遥控系统将对进入主机调速器的设定转速进行临界转速避让、最小转速限制、最大转速限制以及轮机长手动设定最大转速的限制。(1)临界转速自动避让当车钟设定转速处于临界转速区时,为了保证主机不在临界转速上运转,遥控系统将自动地把设定转速限制在界转速区之外,并在设定转速经过临界转速区时,自动地控制其快速通过临界转速区,以确保主机安全运转。(2)最小转速限制当车令设定转速值小于主机最低稳定转速时。为了防止主机不稳定运转或熄火停车,遥控系统将自动地把设定转速限制在主机最低稳定转速上。(3)最大转速限制当车令设定转速值大于主机所允许的最大转速时,为防止主机超速,遥控系统将自动地把设定转速限制在主机所允许的最大转速范围内。由于主机倒车运行工况较正车差,故有些遥控系统还设置了数值上较正车小的最大倒车转速限制。(4)轮机长手动设定最大转速的限制在非应急运转工况下,当车令设定转速值大于轮机长手动设定最大转速的值时,遥控系统将对其车令设定转速值进行限制,以确保主机转速不超过轮机长所设定最大允许转速。4)负荷限制主机转速控制系统在对主机转速进行转速自动控制时,主机的供油量是由调速器根据偏差转速大小来控制的。调速器为了把主机的转速快速调节到设定转速