第六章转录及转录后加工.

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第六章转录及转录后加工第一节转录的基本原理第二节DNA指导下的RNA聚合酶第三节与转录起始和终止有关的DNA结构第四节转录后加工过程及其机制主要内容:转录(transcription)生物体以DNA为模板合成RNA的过程。转录RNADNA第一节转录的基本原理一、基本概念参与转录的物质原料:NTP(ATP,UTP,GTP,CTP)模板:DNA酶:RNA聚合酶(RNApolymerase,RNA-pol)其他蛋白质因子转录与复制的相似之处:⑴都是酶促的核苷酸聚合过程;⑵都以DNA为模板;⑶都需依赖DNA的聚合酶;⑷聚合过程都是核苷酸之间生成磷酸二酯键;⑸都从5′至3′方向延伸成新链多聚核苷酸;⑹都遵从碱基配对规律——但转录忠实性要低于DNA复制。⑺转录与复制都受到严格的调控二、转录与复制的异同转录和复制的区别A-U,T-A,G-CA-T,G-C配对mRNA,tRNA,rRNA子代双链DNA(半保留复制)产物RNA聚合酶(RNA-pol)DNA聚合酶酶NTPdNTP原料模板链转录(不对称转录)两股链均复制模板转录复制A-U,T-A,G-CA-T,G-C配对mRNA,tRNA,rRNA子代双链DNA(半保留复制)产物RNA聚合酶(RNA-pol)DNA聚合酶酶NTPdNTP原料模板链转录(不对称转录)两股链均复制模板转录复制引物有无高度进行性中途不停止可一段一段复制一、原核生物的RNA聚合酶大肠杆菌(E.coli)的RNA聚合酶是由5种亚基α、β、β´、ω和σ(sigma)组成,分子量为480kD。α2ββ´ω称为核心酶(coreenzyme);在试管内能催化NTP聚合生成RNA。σ亚基加上核心酶称为全酶(holoenzyme)。第二节DNA指导下的RNA聚合酶36512决定哪些基因被转录150618催化功能155613结合DNA模板70263辨认起始点亚基分子量功能大肠杆菌RNA聚合酶组分RNA聚合酶——核心酶(coreenzyme)全酶(holoenzyme)ωωRNA聚合酶——RNA聚合酶全酶在转录起始区的结合RNA聚合酶——真核生物的RNA聚合酶种类ⅠⅡⅢ定位核仁核质核质转录产物45s-rRNAhnRNA5s-rRNA,tRNA,U1-13snRNAU6snRNA,(U6除外)非UsnRNA对鹅膏蕈碱反应耐受极敏感中度敏感二、真核生物的RNA聚合酶RNA聚合酶——转录模板•DNA分子上转录出RNA的区段,称为结构基因(structuralgene)。•DNA双链按碱基配对规律能指引转录生成RNA的一股单链,称为模板链(templatestrand),也称作反意义链或Watson链。•相对的另一股单链是编码链(codingstrand),也称为有意义链或Crick链。5´……GCAGTACATGTC……3´3´……cgtcatgtacag……5´5´……GCAGUACAUGUC……3´N……Ala·Val·His·Val……CDNA转录mRNA翻译肽DNA模板、转录产物mRNA和氨基酸序列之间的关系编码链模板链}5335模板链编码链编码链模板链结构基因转录方向转录方向不对称转录(asymmetrictranscription)•在DNA分子双链上某一区段,一股链用作模板指引转录,另一股链不转录;•模板链并非永远在同一条单链上。第三节与转录起始和终止有关的DNA结构一、原核生物的启动子和终止子(一)启动子结构原核生物一个转录区段可视为一个转录单位,称为操纵子(operon),包括若干个结构基因及其上游(upstream)的调控序列。5335结构基因调控序列RNA-polRNA聚合酶结合模板DNA的部位,称为启动子(promoter)。RNA聚合酶保护法开始转录TTGACAAACTGT-35区(Pribnowbox)TATAATPuATATTAPy-10区1-30-5010-10-40-205335原核生物启动子保守序列RNA-pol辨认位点(recognitionsite)55RNA聚合酶保护区结构基因33-35区-10区+1trpTTGACA…N17…TTAACT·N7·A…tRNAtrpTTTACA…N16…TATGAT·N7·A…LacTTTACA…N17…TATGTT·N6·A…recATTGATA…N16…TATAAT·N7·A…araCTGACG…N18…TACTGT·N6·A…最大一致性TTGACATATAAT383629402530373728412944X/45被RNA聚合酶保护的DNA区段碱基序列分析1、Pribnow框:-10区,保守序列为TATAAT。Pribnow框是RNA聚合酶的牢固结合位点,简称结合位点。细菌中常见两种启动子突变:启动子上升突变,提高转录活性;启动子下降突变,降低转录水平。σ的存在保证原核生物RNA聚合酶只能与启动子区而不是其它区域形成稳定的二元复合物。2、Sextama框:-35区,保守序列为TTGACA。Sextama框是RNA聚合酶中σ的识别位点,也是RNA聚合酶的初始结合位点。Pribnow框与Sextama框之间的碱基序列并不重要,但两个序列之间的距离十分重要;天然启动子这段距离多为15~20bp,距离的大小可能是决定启动子强度的因素之一。实验表明:两个序列之间的距离为17bp时,转录效率最高。3、CAP位点:(乳糖操纵子的启动子序列)CAP即分解代谢物基因激活蛋白(catabolitegeneactivationProtein)也称环腺苷酸受体蛋白(CRP)。CAP分子内有两个结构域:羧基末端结构域是DNA结合区;氨基末端结构域是cAMP结合位点。CAP与cAMP的结合能提高CAP对双链DNA的亲和力;CAP与启动子(CAP位点)的结合是激活乳糖操纵子转录的必要条件。乳糖启动子中有两个CAP结合位点:一个在-70~-50位点,称位点Ⅰ;一个在-50~-40位点,称位点Ⅱ。位点Ⅰ包含一个反向重复序列,是强结合位点;位点Ⅱ是弱结合位点。AATGTGAGTTAGCTCACTCATTACACTCAATCGAGTGAGT位点Ⅰ的反向重复序列(二)终止子结构提供转录终止信号的序列称为终止子(terminator)。终止信号存在于RNA聚合酶已经转录过的序列之中。原核生物终止子分为两类:一类是不依赖于ρ因子的转录终止;一类是依赖ρ因子的转录终止;两类终止子有共同的序列特征:在转录终止点之前有一段间断的回文结构。两类终止子碱基组成的不同点:不依赖ρ因子回文结构富含G-C下游富含A-T依赖ρ因子G-C含量较少下游无特征转录方向3´3´5´TCGGGCGAGCCCGCCGCCCGAGCGGGCTAAAAAATTTTTT3´3´5´5´DNA模板链编码链AAAAAAUUUUUU5´CGCCCGAGCGGGCU5´TTTTTTDNA模板链编码链转录产物3´不依赖ρ因子的终止子转录方向3´3´5´TAAGTAGATTCATCCTACTTAGATGAATAGCTACTCGATG3´3´5´5´DNA模板链编码链AGCTACUCGAUG5´CUACUUAGAUGAAU5´TCGATGDNA模板链编码链转录产物3´依赖ρ因子的终止子二、真核生物的启动子Ⅰ类启动子分两部分:-40~+5称为近启动子,决定转录起始的位点;-165~-40称为远启动子,影响转录的频率。真核生物的三种RNA聚合酶,每一种都有自己的启动子类型。(一)RNA聚合酶Ⅰ的启动子即rRNA基因的启动子,称Ⅰ类启动子。(二)RNA聚合酶Ⅱ的启动子1、帽子位点(capsite):即转录起始位点,其碱基大多为A。2、TATA框:又称Hogness框,由含有TATA的6~7个核苷酸组成,保守序列为TATA(A/T)A(A/T)。但TATA框的两侧富含G-C碱基对。TATA框位于-25附近,精确决定转录起始位点。其序列的完整与准确对维持启动子的功能是必需的。即mRNA基因的启动子,称Ⅱ类启动子3、CAAT框:位于-75附近,保守序列为GGNCAATCT。头两个G非常重要,一但突变,转录效率大大下降。CAAT框控制着转录起始的频率。4、GC框:位于-110附近,以5′CCGCC3′序列为特征。5、增强子(enhancer):能结合反式作用因子,决定基因的时间和空间特异性表达,增强启动子转录活性的DNA序列。增强子作用特点:⑴增强效应十分明显:使转录频率增加百倍或千倍。⑵增强效应与其所处的位置和取向无关:增强子以5´→3´或3´→5´排列对启动子都有作用。⑶大多为重复序列:长约50bp,适合与反式因子结合,内部常有一个核心序列,为增强效应所必需。⑷增强效应具有严密的组织和细胞特异性。⑸没有基因专一性。⑹许多增强子受外部信号的调控。GCGC-CAAT-TATA-ATGAATAAA切离加尾真正终止点修饰点外显子内含子翻译起始转录起始TATA盒CAAT盒GC盒增强子真核生物RNApolⅡ的启动子(三)RNA聚合酶Ⅲ的启动子即tRNA基因的启动子,称Ⅲ类启动子。Ⅲ类启动子位于转录起始点下游,称下游启动子或内部启动子。Ⅲ类启动子包括:A盒、B盒A盒靠近5′方向;B盒靠近3′方向。Ⅲ类启动子需要的转录因子包括:TFⅢC、TFⅢB、TFⅢA,前两者是共同的,后者为5SrRNA基因转录所需。三、原核生物和真核生物转录起始位点的结构差异原核生物真核生物帽子结构没有有起始核苷酸嘌呤或嘧啶嘌呤(A为主)启动区范围较小(+1~-70)较大(+1~-110)上游序列TTGACACAAT、GC、增强子图5-4P155页原核生物与真核生物启动子比较原核生物和真核生物转录及抑制剂第四节原核生物转录的起始原核生物转录的延长原核生物转录的终止与新合成RNA链的释放真核生物的转录RNA生物合成抑制剂转录起始需解决两个问题:1.RNA聚合酶必须准确地结合在转录模板的起始区域。2.DNA双链解开,使其中的一条链作为转录的模板。一、原核生物转录的起始4.-10区DNA双链解开12~17bp,形成开放的二元启动子复合物(模板-酶)。2.RNA聚合酶全酶(2ω)与模板-35序列结合,形成闭合的二元闭合启动子复合物。转录起始过程1.因子辨认转录起始点(-35区的TTGACA序列)3.RNA聚合酶向-10区转移,并与之牢固结合。RNApol(2)-DNA-pppGpN-OH3转录起始复合物:5-pppG-OH+NTP5-pppGpN-OH3+ppi5.在RNA聚合酶β亚基催化下形成第一个磷酸二酯键,形成三元复合物(模板-酶-RNA)。6.当三元复合物中RNA长6~9个核苷酸时,因子从全酶解离下来,进入延长阶段。RNA聚合酶有两个核苷酸结合位点:一个是起始核苷酸位点;一个是延长核苷酸位点。一般只有嘌呤核苷酸填充了起始位点,才能形成第一个磷酸二酯键。二、原核生物转录的延长1.亚基脱落,RNA–pol聚合酶核心酶变构,与模板结合松弛,沿着DNA模板前移;2.在核心酶作用下,NTP不断聚合,RNA链不断延长。(NMP)n+NTP(NMP)n+1+PPi3.碱基配对原则:A-U,T-A,G-C4.延长中的转录复合物也叫转录空泡。随着RNA聚合酶前移,转录产物RNA不断移出转录空泡,已转录完毕的DNA双链又重新复合而不再打开。5.原核生物的转录和翻译偶联进行。依赖ρ因子的转录终止非依赖ρ因子的转录终止三、原核生物转录的终止和新生RNA链的释放指RNA聚合酶在DNA模板上停顿下来不再前进,转录产物RNA链从转录复合物上脱落下来。分类(一)依赖ρ因子的转录终止1969年,Roberts发现了能控制转录终止的蛋白质,即ρ因子。它由相同的6个亚基组成六聚体,分子量200kD。ρ因子具有NTP酶活性和解螺旋酶活性,是促使转录三元复合物解离的根本原因。ρ因子的NTP酶活性依赖于单链RNA的结构。ρ因子依赖性终止子含有一个反向重复序列,

1 / 95
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功