1第四节织物的接触舒适性织物的视觉舒适性(visualcomfort),较多地体现人的心理直接感受,如面料的色彩、光泽、组织和形态。织物的热湿舒适性(thermalcomfort),则反映人—织物—环境间微气候(microclimate)对人体的作用,主要为人体的生理和物理感觉,如透气导湿性,传热或保暖性等,这已经在前面二节中作了介绍。触觉舒适的概念发生于人与接触对象之间,触觉舒适性(tactilecomfort)在名称上与织物的手感(handle)风格或传统触觉风格似乎有些雷同,但本质上有很大区别,因为传统的触觉风格只是以手感和指尖触摸织物所得的某种感觉为依据的评价方法。触觉舒适性,又称接触舒适性,是指人体皮肤在受到外加织物或服饰作用时的一种生理感觉,具有被动性和不可回避性。其作用位置是人体须遮蔽保护或保暖的皮肤。其作用形式则是局部的刺激和压迫,往往是不愉悦的感觉(discomfort)。这种刺激还会引起皮下神经末梢的感应和激发,刺激周围感应细胞,形成连锁反应[1],如分泌、散发、充血、细胞收缩和疲劳,其结果往往产生生理不适和心理不悦[2]。一、触觉舒适性与皮肤构造接触的舒适感源于皮肤与织物接触时,织物对表皮层下的感觉接受器(sensoryreceptor)的刺激。这些感受器即为人体的感觉神经,其包括:触觉感受器(touchreceptor)、热感受器(thermalreceptor)和痛感受器(painreceptor),并使人感觉到发生这些刺激作用的部位、区域和持续时间。皮肤与织物接触时会产生各种感觉,其一般定性的描述是:痒或瘙痒(tickle,itch),刺痒或刺痛(prickle),刮擦痒(scratchiness),局部压迫(localizedtightness),接触冷感或温感(initialcool/warmfeeling),湿粘涩(wetandtackyclinging),振动与拔拉汗毛(fibreshedding),过敏反应(allergicresponse)等[3],以及表面光滑或粗糙,坚硬或柔软。归纳起来,接触不适感主要包含三个方面的内容:其一是织物的刺痒感,主要是织物上的毛羽或硬、尖物对皮肤的作用,以及人体对织物上的化学物质乃至对纤维材料本身的过敏反应;其二,是织物对出汗皮肤的粘贴,含有汗、脂残留物的织物与皮肤间的粘涩,以及汗液蒸发时与织物接触的湿冷感;其三,是服装结构不合适引起织物对皮肤的局部压迫不适。而织物贴肤的舒适感主要是两方面。一是表现在织物接触皮肤的瞬间所产生的温/冷感,温感相对冷感可能稍慢些,但对感觉者来说都是一种快感。一般多毛羽的织物温感较强;表面光洁,接触面大,导热性好的织物冷感较强。二是对于持续性作用于皮肤的爽适触感,主要表现在纤维的表面形态和湿传导性。纤维形态的作用目前还不甚明了,但纤维及其集合体的湿传导性质对织物的爽感(crispcomfort)影响极大[4]。织物的刺痒感、湿粘涩感,局部压迫感,接触冷、温、爽感均属织物接触觉舒适性的范畴,而且是织物与皮肤直接发生的生理和物理作用。因此,接触舒适性从生理学(physiology),或神经生理学(neurophysiology),心理物理学(psychophysics)和心理生理学(psychophysiology)角度上说,直接取决于人体的皮肤感觉系统。通常人与人之间,人体不同位置之间的皮肤触感的敏感性是不相同的。一般较薄、软的皮肤比较厚、硬的皮肤敏感,皮肤的温度较高时比温度较低时敏感。这些可以从人体皮肤的构造得到解释,如图11-15所示。皮肤的结构分为表皮层(epidermis)、真皮层(dermis)和皮下组织。表皮层有五层结构如图11-15(b)所示,厚度为0.1~0.2mm,因人、年龄、部位、环境和地理条件而变。不含感觉细胞,但含部分游离神经末梢。其最外层为角质(keratin)细胞,并覆有酸性酯类复合物的表面膜。角质细胞层较硬,且不断代谢脱落。表皮最下层为基底膜,与真皮相邻。表皮底层细胞分裂2后外推,最后到达角质层脱落,代谢周期为4周。真皮层中含有丰富的神经末梢(nervefiberend)和小体感受器(recepter),以及毛细血管、汗腺、皮脂腺和立毛肌。小体感受器和游离神经末梢是有髓鞘(myelinated)和无髓鞘(nonmyelinated)神经纤维的末端,其感触信号的传递是通过这些神经细胞中的神经递质(neurotransmitter),乙酰胆碱(acetylcholine)、单胺类(monoamines)、神经肽(neuropeptide)、氨基酸类(amino-acids)和血管紧张素(angiotensin)等,完成传递。真皮由胶原和蛋白质弹性纤维(0.1μm)组成,内充液体、富有弹性,且以球状突入于表皮层,形成圆突起状的界面,如图11-15(c)。真皮层厚度为2.0~4.0mm。皮下组织为脂肪层,女性比男性厚,富有弹性,绝热性强,能储存热量和调节人体体温。可以得出表皮层越厚、硬,真皮及其皮下层中的感觉神经和细胞越少,接触的敏感性越低,但必须清楚产生感觉的机制是神经末梢和感受器。皮肤可感知的单一的接触感觉有:触/压觉、冷/温觉和痛觉。而对应的感受体是触压感受小体(Meissner小体和Merkel细胞)、压觉环层小体(Pacini细胞),冷(Krause终球)、温(Ruffini末端体)感受器和痛觉游离神经末梢(freefiberends)。每一种触感模式(tactilitymodality)有着不同的质(quality)和量(quantity),在实际中往往对应着许多复合的触感,如潮湿和干燥、平滑和粗糙、坚硬与柔软、粘涩与滑爽等。图11-15皮肤组织构造及其感受器触压感受小体在人体皮肤上有50万个,随人体部位的不同而异。一般指尖和唇部较多,可达130个/cm2以上。触压觉反映外物作用的肌体变形、振动和搔痒的感觉,通称为机械作用感觉。其中Meissner小体触感较快,Merkel细胞在基底层感觉较慢,Pacini细胞在皮肤的皮下组织中感受压觉。温觉感受器和冷觉感受器分别为3万和25万个,且温觉Ruffini小体在较深的真皮下层,冷觉Krause终球在较浅的真皮上层。这可以得到为何冷觉比温觉更快的原因。冷觉的感应可能不仅来源于Krause小体,还会来自于某些游离神经末梢的感受。冷、温感觉是一种生理作用,其能量和感觉的转换机理目前尚不清楚。痛觉感受器为纤维状神经末梢。由于神经为树枝状,因此痛觉感受点多达200多万个。而且其集中在真皮乳突状部位,并部分延伸至表皮层中,对外界的机械、物理、化学刺激极敏感,故是感觉痛、痒和振动的极敏感的感觉体。痛觉神经感知痛觉的主要物理机制是神经末梢的破坏和塑性变形,但其生理和心理上的解释就相当复杂和不太清楚。如3持续作用时的消失和麻木不能说明痛作用的停止。纤维的刺痒感产生的主要机制就是痛觉神经末梢的反应。二、织物的刺痒感织物的刺痒感一般指织物表面毛羽对皮肤的刺扎疼痛和轻扎、刮拉、摩擦的痒之综合感觉,而且往往以“痒”为主。这与通常所说的织物表面的粗糙、软硬的概念无关。已有的理论给出了人体感觉的痛觉感受器(painreceptor)—游离神经末梢,但却没有对应于痒的感受器。神经生理学上以为,痒主要是由痛觉和触觉感受器感受的,其中痛觉神经末梢的感受为最主要的[5]。低作用力下的反复、持久作用极易引起皮肤痒的感觉。而强烈的、局部大变形的刺激将引起疼痛[6]。故可以认为痒觉是痛觉的先导。当作用外力大于某一阈值时(75mgf),痒可能变换为痛的感觉。1.刺痒的生理作用Garnsworthy[7,8],Kenins[9]和Mountcastle[10]等人以动物(兔子或猴)和人体为研究对象,利用电极或机械针刺激单个神经来确定哪一类神经对刺痒感起主要作用。研究表明[7],当刺激皮肤表层神经区域,只有痛觉小体感受器对具有不同刺扎感的织物起反映。在一般穿着状态下,织物并不能刺激这类神经感受器使其产生反应,但是随着织物的毛羽量增加,神经的反应也增加,刺痒感产生。如果此时皮肤被润湿,则刺激量也会加剧。另外,如果任意抽拔出一根织物中的粗纤维,去刺激皮肤,只要施加在纤维上的力大于75mgf疼痛神经也同样会起反应。纤维刺扎皮肤,刺激疼痛神经如图11-16所示。图11-16纤维与皮肤感觉神经作用示意图图11-17纤维毛羽与皮肤接触的形式皮肤电极刺激实验表明,通常在长有汗毛的皮肤表层,痛觉神经末梢分布最接近皮肤表层[7]。这就可以解释为什么手指一般感觉不到刺痒,因为指端的皮肤非常厚。润湿皮肤就可以软化皮肤表层的角质层,使得机械力更易刺扎皮肤。纤维刺扎皮肤产生的红肿,是由于多态神经感受小体C(polymodalnociceptiveCnerves)使受刺扎皮肤周围的血流量增加,并不是由于过敏引起的[9]。用电极刺激动物和人体单一神经末梢实验表明,如果要使受刺激神经纤维产生反应,必须施加一定程度的刺激,大部分的疼痛神经都是如此[11]。在动物实验中还发现,采用具有与羊毛同样线密度和抗弯刚度的腈纶纤维去刺激动物神经,较大的刺扎力会激发神经末梢反应,而同时采用两根同样的腈纶纤维,以较微弱的力去刺扎同一处神经,不会激发神经纤维反应,实验结果说明神经纤维的激发需要一定的激发阈值[12]。同性质的纤维同时进行多点刺扎实验时,刺痒感产生的阈值的探讨还未见报道,有可能是因为受到试样及实验点选取等实验条件的限制。皮肤结构影响刺痒感因素的了解还十分有限,根据现有的实验结果,可以总结为以下几个主4要影响因素[13]:神经末梢分布深度;神经末梢分布密度;神经末梢灵敏度;个人心理感觉差异和其他未知影响因素。2.刺扎纤维的特征与作用不同纤维性状及毛羽形态,不同织物结构对人体产生的刺痒感是不同的[13]。纤维性能与形状,如直径、长度和刚度是最为重要的影响因素。前两者影响织物表面毛羽的长度和密度,直径和毛羽长度还影响纤维刚度[14]。纤维刚度不仅影响成纱的表面光洁度,而且直接决定纤维对皮肤表面的刺扎作用。对夏布麻纱与机织麻纱织物的实验比较表明,传统苎麻产品—夏布并不产生恼人的刺痒[15]。夏布的麻纱是以手工劈细的,纤维间被胶质粘连,故实际纤维体特长。而机织麻纱是精干麻经切断、打松后,为单纤维,长度较短。两者相比,后者的纱线表面通常毛羽特别多。因此,苎麻织物刺痒感产生的原因,一方面是由于麻纤维本身的粗、硬和具有较大的弯曲刚度;另一方面是由于麻纤维突出于织物表面形成较多的毛羽产生的。毛羽形态对刺扎过程中的刺痒形式和痛痒感觉有影响。织物与皮肤接触时,如果压力小,支持面主要是由一定硬度的毛羽提供;压力大时,毛羽倒伏,由织物组织构成支持面。如以硬挺毛羽作为接触或支撑表面的,可有两种接触形式,即正压刺扎和切向摩擦或刮拉接触形式,如图11-17所示。竖直正压刺扎分为纤维头端点和弯曲头端正对皮肤方向运动两种。前者,纤维受压产生压缩和弯曲变形,其反作用力将通过头端作用于皮肤,由于接触点面积小,压强大,刺扎感强。其强弱主要取决于纤维的轴向压缩刚度和纤维的头端形状与纤维的粗细。后者,由于纤维头端的弯曲,接触面积增大,虽皮肤正对纤维主轴运动,但皮肤受压产生的压强小,刺痒作用弱于前者。其强弱主要取决于纤维长度、抗弯刚度和纤维的表面特征。竖直摩擦式和弯曲摩擦式的纤维主体相对于皮肤切向运动,对皮肤产生切变应力。产生的压强虽小,但由于纤维的反弹恢复倾向,将产生震动滑移,在较大区域内形成持续的刮拉刺扎作用。其作用大小还取决于纤维轴与运动方向的夹角大小。织物毛羽对人体毛发的拨动,以及织物本身或密集毛羽对毛发的纠缠拔拉,同样会产生痒、痛。前者拨动作用,实用中很少被感觉到,这可能只有动态拨弹会引起毛发根部感觉神经的作用。而后者毛发的纠缠拔拉,将直接引起疼痛不适感。3.织物的组织结构织物结构影响皮肤刺痒感,主要是织物组织的稀密程度和纱线的捻度大小[13]。可以解释为,毛羽是一端被织物中的纱线所抱合握持,一端伸展在外的纤维。如果织物结构松散,纱线捻度小,毛羽被握持一端