等离子弧焊的研究现状及发展趋势1概述等离子弧焊发明于1953年,英文学名为“PlasmaArcWelding”,缩写为PAW,由钨极氩弧焊发展而成,是该领域内的一项重大技术创新。等离子弧焊与原始的TIG焊相比,具有优质、高效、经济等优点,早在上世纪60年代初已成功用于金属制品生产。近20年来,等离子弧焊技术获得了进一步的发展,并成为现代焊接结构制造业中不可缺少的精密焊接工艺方法,在压力容器、管道、航天航空、石化装置、核能装备和食品及制药机械生产中得到普遍的推广应用,可以焊接普通优质碳钢、低合金钢、不锈钢、镍基合金、铜镍合金、钛、钽、锆及其合金和铝及其合金等金属材料。为充分发挥等离子弧焊方法的潜在优势,增强其工艺适应性,进一步扩大应用范围,已开发出各种等离子弧焊工艺方法,如微束等离子弧焊、熔透型(弱等离子)等离子弧焊、锁孔型等离子弧焊、脉冲等离子弧焊、交流变极性等离子弧焊、等离子弧钎焊和等离子弧堆焊等。可以预料,等离子弧焊必将在现代工业生产中发挥出愈来愈重要的作用。2等离子弧焊的基本工作原理等离子弧焊是早期对焊接电弧物理深入研究的最重要的成果之一。通过试验研究发现,在任何一种焊接电弧中,都存在温度超过3000℃的等离子区,但在自由状态的电弧中,这一区域的尺寸显得过小,且紧靠阴极,未能充分发挥其作用。TIG焊自由状态电弧的形貌成锥形,大部分能量被散失,电弧的热效率很低,从而大大降低了焊接效率。为充分利用电弧的能量,自然萌发出将电弧柱进行压缩,使其能量集中的想法,并逐步形成了等离子弧焊的设计思想。等离子弧是一种被压缩的钨极氢弧,或者说是一种受约束的非自由电弧。一般情况下,借助于水冷喷嘴的约束作用,等离子体电弧弧柱在压缩作用下形成压缩电弧,即等离子弧。等离子弧由特殊结构的等离子体发生器产生,具有热压缩效应、机械压缩效应以及电磁压缩效应的特点。根据电极接电方式,等离子弧可以分为非转移型等离子弧和转移型等离子弧。非转移型等离子弧的电极接负极,喷嘴接正极,电极与喷嘴之间产生等离子弧,工件不接电;转移型等离子弧电极接负极,工件接正极,等离子弧在电机与工件之间产生。国内的等离子弧焊接有混合型等离子弧,即非转移型等离子弧和转移型等离子弧同时存在,电极接负极,喷嘴与工件接正极。等离子弧焊接多使用惰性气体氢气作为工作气和保护气,利用产生的高温等离子弧做焊接热源,通过加热并熔化焊材以及母材金属,使熔化的焊材熔敷在母材上,同时熔化的焊材与母材之间发生复杂的冶金作用而形成焊接接头。一般情况下,等离子弧焊接有以下几种分类方法。根据操作方式的不同,等离子弧焊接分为手工等离子弧焊接和自动等离子弧焊接;根据焊接工艺.等离子弧焊接可分为脉冲等离子弧焊接、小孔型等离子弧焊接、微束等离子弧焊接、熔化极等离子弧焊接、热兹等离子弧焊接等;根据焊透母材的方式,等离子弧焊接可分为穿透型等离子弧焊接和熔透型等离子弧焊接。3等离子弧焊接特点等离子弧作为一种钨极氢弧,由于受到水冷喷嘴的压缩,在机械压缩效应、热压缩效应以及电弧自身的电磁压缩效应下,使等离子弧具有能量密度更加集中、温度更加高、焰流速度更加大,而且刚直性更好的特点。鉴于等离子弧的以上特点,等离子弧焊接相对于钨极氢弧焊而言,具有以下优点。(1)电弧能量密度大,熔透能力强,因此焊缝深宽比大,截而积小;(2)焊接速度快,薄板焊接变形小,厚板焊接时热影响区窄;(3)电弧方向性强,挺度好,稳定性好,电弧容易控制;(4)钨极内缩在喷嘴内部,不能与工件接触,可以杜绝焊缝夹钨,焊缝质量高;(5)可以产生稳定的小孔效应,通过小孔效应,可以正而焊接获得良好的单而焊双而成形。等离子弧焊接的缺点:(1)焊接时需要保护气和等离子气两股气流,使焊接过程控制和焊枪结构复杂化;(2)焊接过程中,需控制的工艺参数较多,对焊接操作人员的技术要求较高,尤其是程序化控制的自动等离子弧焊接。4等离子弧焊工艺方法的新发展近年来,为适应不同焊件的工艺要求,等离子弧焊工艺方法得到了很大的发展,并开发出了多种等离子弧焊工艺方法。它们已在各工业部门得以推广应用。4.1微束等离子弧焊微束等离子弧焊亦称微弧等离子焊,其常规的焊接电流范围为0.1~25A,以产生直径很细的等离子弧而得名,可用于壁厚范围为0.01~1.5mm的箔材和微型零部件的焊接。微束等离子弧焊作为一种精密焊接法广泛应用于检测仪表和微电子器件制造行业。微束等离子弧焊最大的特点是可在极低的电流下(最小极限电流为25mA)维持稳定的电弧,甚至可以用来焊接几克重的微型零件,且可保证优异的焊接质量。在许多应用场合,微束等离子弧焊由于设备投资低,其技术经济指标优于激光束焊,已成为一种值得大力推广的经济、精密的熔焊方法。4.2锁孔型等离子弧焊锁孔型等离子弧焊亦称穿透型等离子弧焊,它是利用高速、高温的等离子气流将焊接熔池穿透,并在底部形成小孔,随着等离子弧的前移,焊接熔池利用其本身的表面张力将小孔熔合,形成酒杯状焊缝横截面形状。这样可以一次行程完成单面焊双面成形的焊缝。在焊接不锈钢、高合金耐热钢、镍基合金和钛合金时,焊缝正反面均能达到令人满意的成形,外表均整美观。目前已成为上列材料焊接的首选焊接工艺方法,在某些工业发达国家,对于质量要求较高的不锈钢压力容器主焊缝,甚至在产品施工图样上强制性规定必须采用等离子弧焊。可见,锁孔型等离子弧焊已被该领域的工程技术人员公认为最先进的优质焊接法,并已取得成熟的生产经验,4.3熔透型等离子弧焊熔透型等离子弧焊的工作原理与锁孔型等离子弧焊的区别在于:适当减少离子气的流量,并扩大喷嘴孔道直径,以降低等离子弧的压缩程度和穿透能力,产生一种所谓弱等离子弧。焊接过程中,焊接熔池的形成主要借助等离子弧热传导。熔透深度的控制则通过调整能量参数(焊接电流、焊接速度)来实现。熔透型等离子弧焊的特点是可在相当宽的焊接电流范围内(25~500A)良好地操作。此外,等离子弧的稳定性和弧柱温度大大高于TIG焊,因此,可以相当快的速度(大于60m/h)完成焊接过程,并保证焊缝的高质量。熔透型等离子弧焊已在制管、电工、电子器件、过滤器、航空器械、船舶和核能装置部件等制造行业得到广泛应用,并取得了可观的经济效益。4.4直流脉冲等离子弧焊为将锁孔型等离子弧焊也能适用于全位置焊,开发了焊接电流和离子气流量同步脉冲的直流脉冲等离子弧焊(脉冲频率1~20Hz)。这样,如同脉冲TIG焊一样,可按要求严格控制焊接热输入量,从而保证在立焊、仰焊位置亦能使焊缝良好地成形,大大提高了锁孔型等离子弧焊的工艺适应性,满足了许多大型焊件和管件在安装位置焊接的需要。在食品、饮料加工、石化工业中需建造大量大直径薄壁容器和贮罐,由于这些薄壁容器的刚度很小,不适宜于卧式组装和焊接,而必须采取立式组装,这就要求在立焊位置焊接筒体的纵缝,在横焊位置焊接环缝,直流脉冲等离子弧焊在该制造行业已推广应用。5结论及展望等离子弧焊接技术发展至今仅仅经历了60余年,其最初在航空航天工业中得到重视,并且应用逐步加强。随着石油工业、汽车工业以及核电工业的发展,对于具有高焊接质量的等离子弧焊接技术将会得到更加广泛的应用。随着高端装备制造工业的快速发展,等离子弧焊接技术将会有更大的提高和更快的发展。等离子弧焊接的电弧能量密度大,熔透能力强以及电弧方向性强,焊接速度快,效率高的特点将会得到更充分地发挥。在再制造技术领域中,由于先进技术方法的应用,程序化控制的自动等离子弧焊接技术,不仅进一步提高了焊接效率,并且大大提高了焊接质量,因此,作为等离子弧焊接技术的发展方向,程序化控制的自动等离子弧焊接技术在再制造工业中必然会得到更广泛的应用。