解直角三角形的应用本课学习目标:1.了解仰角、俯角的概念,能应用解直角三角形解决一类观测实际问题.2.进一步了解数学建模思想,能将实际问题中的数量关系转化为直角三角形中元素之间的关系.一、温故而知新计算器三角函数边:角:解直角三角形解直角三角形原则:(1);(2).我添加的条件是:解这个直角三角形.二、例题讲练【例1】直升飞机在跨江大桥AB的上方P点处,此时飞机离地面的高度PO=450米,且A、B、O三点在一条直线上,测得大桥两端的俯角分别为α=30°,β=45°,求大桥的长AB.POBA450米A的对边aA的邻边b斜边cCBA变题1:直升飞机在长400米的跨江大桥AB的上方P点处,且A、B、O三点在一条直线上,在大桥的两端测得飞机的仰角分别为30°和45°,求飞机的高度PO.变题2:直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和60°,求飞机的高度PO.变题3:直升飞机在高为200米的大楼AB左侧P点处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间的水平距离.变题4:汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30,B村的俯角为60(如图).求A、B两个村庄间的距离.(结果精确到米,参考数据21.41431.732,)三、拓展延伸POBA45°30°400米30°45°200米POBA45°30°PABDO200米QBCPA4506030【例2】学生小王帮在测绘局工作的爸爸买了一些仪器后与同学在环西文化广场休息,看到濠河对岸的电视塔,他想用手中的测角仪和卷尺不过河测出电视塔空中塔楼的高度.现已测出∠ADB=40°,由于不能过河,因此无法知道BD的长度,于是他向前走50米到达C处测得∠ACB=55°,但他们在计算中碰到了困难,请大家一起想想办法,求出电视塔塔楼AB的高.(参考数据:217tan40,tan55255)【例3】在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:21.414,31.732)四、反馈练习1.如图1,已知楼房AB高为50m,铁塔塔基距楼房地基间的水平距离BD为100m,塔高CD为1003(50)3m,则下面结论中正确的是().A.由楼顶望塔顶仰角为60°B.由楼顶望塔基俯角为60°C.由楼顶望塔顶仰角为30°D.由楼顶望塔基俯角为30°2.如图2,在离铁塔BE120m的A处,用测角仪测量塔顶的仰角为30°,已知测角仪高AD=1.5m,则塔高BE=_________(根号保留).濠河55°40°ADCB50m3.如图3,从地面上的C,D两点测得树顶的仰角分别是45°和30°,已知CD=200m,点C在BD上,则树高AB等于(根号保留).4.如图4,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为.5.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30,B村的俯角为60(如图5).求A、B两个村庄间的距离.6.作业布置1.一架直升机从某塔顶A测得地面C、D两点的俯角分别为30°、45°,若C、D与塔底B共线,CD=200米,求塔高AB.2.有一块三形场地ABC,测得其中AB边长为60米,AC边长50米,∠ABC=30°,试求出这个三角形场地的面积.3.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由图1图2图3图4ADCB30º45ºQBCPA4506030图5