1第4章贪心算法2基本思想3基本思想4基本思想5基本思想例子:如果面值改为1分、5分和11分,现要找给顾客15分,则用贪心算法,找钱方法:11+1+1+1+1显然,找3个5分解决问题!!!两种情况下可采用贪心算法:1、利用贪心算法能够找到原问题的整体最优解;2、利用贪心算法找到的解是原问题解的近似解。不是整体最优解6活动安排问题设有n个活动的集合E={1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且sifi。如果选择了活动i,则它在半开时间区间[si,fi)内占用资源。若区间[si,fi)与区间[sj,fj)不相交,则称活动i与活动j是相容的。也就是说,当si≥fj或sj≥fi时,活动i与活动j相容。活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合。7活动安排问题假设个活动的起始时间和结束时间存储于数组s和f中且按照结束时间的非递减序排列。注意:如果所给出的活动未按此序排列,可以用O(nlogn)的时间重排。voidGreedySelector(intn,ints[],intf[],boolA[]){A[1]=true;intj=1;for(inti=2;i=n;i++)if(s[i]=f[j]){A[i]=true;j=i;}elseA[i]=false;}8活动安排问题由于输入的活动以其完成时间的非减序排列,所以算法GreedySelector每次总是选择具有最早完成时间的相容活动加入集合A中。直观上,按这种方法选择相容活动为未安排活动留下尽可能多的时间。也就是说,该算法的贪心选择的意义是使剩余的可安排时间段极大化,以便安排尽可能多的相容活动。9活动安排问题例:设待安排的11个活动的开始时间和结束时间按结束时间的非减序排列如下:i1234567891011S[i]130535688212f[i]456789101112131410活动安排问题算法GreedySelector的计算过程如左图所示。图中每行相应于算法的一次迭代。阴影长条表示的活动是已选入集合A的活动,而空白长条表示的活动是当前正在检查相容性的活动。11活动安排问题贪心算法并不总能求得问题的整体最优解。但对于活动安排问题,贪心算法GreedySelector却总能求得的整体最优解,即它最终所确定的相容活动集合A的规模最大。这个结论可以用数学归纳法证明。12贪心算法的基本要素对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解呢?这个问题很难给予肯定的回答。但是,从许多可以用贪心算法求解的问题中看到这类问题一般具有2个重要的性质:贪心选择性质和最优子结构性质。13贪心算法的基本要素1.贪心选择性质所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。14贪心算法的基本要素2.最优子结构性质当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。15贪心算法的基本要素3.贪心算法与动态规划算法的差异贪心算法和动态规划算法都要求问题具有最优子结构性质,这是2类算法的一个共同点。但是,对于具有最优子结构的问题应该选用贪心算法还是动态规划算法求解?是否能用动态规划算法求解的问题也能用贪心算法求解?16贪心算法的基本要素0-1背包问题:给定n种物品和一个背包。物品i的重量是wi,其价值为vi,背包的容量为c。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。动态规划算法可解17贪心算法的基本要素背包问题:与0-1背包问题类似,所不同的是在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部装入背包,1≤i≤n。这2类问题都具有最优子结构性质,极为相似,但背包问题可以用贪心算法求解,而0-1背包问题却不能用贪心算法求解。18贪心算法的基本要素用贪心算法解背包问题的基本步骤:首先,计算每种物品单位重量的价值vi/wi;然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包;若将这种物品全部装入背包后,背包内的物品总重量未超过c,则选择单位重量价值次高的物品并尽可能多地装入背包。依此策略一直地进行下去,直到背包装满为止。19贪心算法的基本要素voidKnapsack(intn,floatM,floatv[],floatw[],floatx[]){Sort(n,v,w);for(inti=1;i=n;i++)x[i]=0;floatc=M;for(inti=1;i=n;i++){if(w[i]c)break;x[i]=1;c-=w[i];}if(i=n)x[i]=c/w[i];}//将各物品根据单位重量的价值从大到小排序时间复杂性:O(nlogn)20贪心算法的基本要素0-1背包问题不能使用贪心算法求解:1060120100230120350Bag2010贪心算法3020动态规划算法X100+120=22060+100=16021最优装载有一批集装箱要装上一艘载重量为c的轮船。其中集装箱i的重量为wi。最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船。算法描述最优装载问题可用贪心算法求解。采用重量最轻者先装的贪心选择策略,可产生最优装载问题的最优解。22最优装载voidLoading(intx[],floatw[],floatc,intn){Sort(n,w);for(inti=1;i=n;i++)x[i]=0;for(inti=1;i=n&&w[i]=c;i++){x[i]=1;c-=w[i];}}//将各集装箱根据重量从小到大排序时间复杂性:O(nlogn)23最小生成树设G=(V,E)是无向连通带权图,即一个网络。E中每条边(v,w)的权为c[v][w]。如果G的子图G’是一棵包含G的所有顶点的树,则称G’为G的生成树。生成树上各边权的总和称为该生成树的耗费。在G的所有生成树中,耗费最小的生成树称为G的最小生成树。网络的最小生成树在实际中有广泛应用。例如,在设计通信网络时,用图的顶点表示城市,用边(v,w)的权c[v][w]表示建立城市v和城市w之间的通信线路所需的费用,则最小生成树就给出了建立通信网络的最经济的方案。24最小生成树1.最小生成树性质用贪心算法设计策略可以设计出构造最小生成树的有效算法。本节介绍的构造最小生成树的Prim算法和Kruskal算法都可以看作是应用贪心算法设计策略的例子。尽管这2个算法做贪心选择的方式不同,它们都利用了下面的最小生成树性质:设G=(V,E)是连通带权图,U是V的真子集。如果(u,v)E,且uU,vV-U,且在所有这样的边中,(u,v)的权c[u][v]最小,那么一定存在G的一棵最小生成树,它以(u,v)为其中一条边。这个性质有时也称为MST性质。25最小生成树2.Prim算法设G=(V,E)是连通带权图,V={1,2,…,n}。构造G的最小生成树的Prim算法的基本思想是:首先置S={1},然后,只要S是V的真子集,就作如下的贪心选择:选取满足条件iS,jV-S,且c[i][j]最小的边,将顶点j添加到S中。这个过程一直进行到S=V时为止。在这个过程中选取到的所有边恰好构成G的一棵最小生成树。26最小生成树利用最小生成树性质和数学归纳法容易证明,上述算法中的边集合T始终包含G的某棵最小生成树中的边。因此,在算法结束时,T中的所有边构成G的一棵最小生成树。例如,对于右图中的带权图,按Prim算法选取边的过程如下页图所示。27最小生成树28最小生成树在上述Prim算法中,还应当考虑如何有效地找出满足条件iS,jV-S,且权c[i][j]最小的边(i,j)。实现这个目的的较简单的办法是设置2个数组closest和lowcost。在Prim算法执行过程中,先找出V-S中使lowcost值最小的顶点j,然后根据数组closest选取边(j,closest[j]),最后将j添加到S中,并对closest和lowcost作必要的修改。用这个办法实现的Prim算法所需的计算时间为)(2nO29最小生成树3.Kruskal算法Kruskal算法构造G的最小生成树的基本思想是,首先将G的n个顶点看成n个孤立的连通分支。将所有的边按权从小到大排序。然后从第一条边开始,依边权递增的顺序查看每一条边,并按下述方法连接2个不同的连通分支:当查看到第k条边(v,w)时,如果端点v和w分别是当前2个不同的连通分支T1和T2中的顶点时,就用边(v,w)将T1和T2连接成一个连通分支,然后继续查看第k+1条边;如果端点v和w在当前的同一个连通分支中,就直接再查看第k+1条边。这个过程一直进行到只剩下一个连通分支时为止。30最小生成树例如,对前面的连通带权图,按Kruskal算法顺序得到的最小生成树上的边如下图所示。31最小生成树关于集合的一些基本运算可用于实现Kruskal算法。按权的递增顺序查看等价于对优先队列执行removeMin运算。可以用堆实现这个优先队列。对一个由连通分支组成的集合不断进行修改,需要用到抽象数据类型并查集UnionFind所支持的基本运算。当图的边数为e时,Kruskal算法所需的计算时间是。当时,Kruskal算法比Prim算法差,但当时,Kruskal算法却比Prim算法好得多。)log(eeO)(2ne)(2noe32哈夫曼编码哈夫曼编码是广泛地用于数据文件压缩的十分有效的编码方法。其压缩率通常在20%~90%之间。哈夫曼编码算法用字符在文件中出现的频率表来建立一个用0,1串表示各字符的最优表示方式。给出现频率高的字符较短的编码,出现频率较低的字符以较长的编码,可以大大缩短总码长。1.前缀码对每一个字符规定一个0,1串作为其代码,并要求任一字符的代码都不是其他字符代码的前缀。这种编码称为前缀码。33哈夫曼编码编码的前缀性质可以使译码方法非常简单。表示最优前缀码的二叉树总是一棵完全二叉树,即树中任一结点都有2个儿子结点。平均码长定义为:使平均码长达到最小的前缀码编码方案称为给定编码字符集C的最优前缀码。)()()(cdcfTBTCc34哈夫曼编码2.构造哈夫曼编码哈夫曼提出构造最优前缀码的贪心算法,由此产生的编码方案称为哈夫曼编码。哈夫曼算法以自底向上的方式构造表示最优前缀码的二叉树T。算法以|C|个叶结点开始,执行|C|-1次的“合并”运算后产生最终所要求的树T。35哈夫曼编码在书上给出的算法huffmanTree中,编码字符集中每一字符c的频率是f(c)。以f为键值的优先队列Q用在贪心选择时有效地确定算法当前要合并的2棵具有最小频率的树。一旦2棵具有最小频率的树合并后,产生一棵新的树,其频率为合并的2棵树的频率之和,并将新树插入优先队列Q。经过n-1次的合并后,优先队列中只剩下一棵树,即所要求的树T。算法huffmanTree用最小堆实现优先队列Q。初始化优先队列需要O(n)计算时间,由于最小堆的removeMin和put运算均需O(logn)时间,n-1次的合并总共需要O(nlogn)计算时间。因此,关于n个字符的哈夫曼算法的计算时间为O(nlogn)。36哈夫曼编码3.哈夫曼算法的正确性要证明哈夫曼算法的正确性,只要证明最优前缀码问题具有贪心选择性质和最优子结构性质。(1)贪心选