题目:精密加工技术的发展现状与应用I内容摘要通过砂带研磨、精密切削、超精密磨削、珩磨、精密研磨、抛光等几种传统精密加工方法的论述对比,论述现有的传统精密加工方法;再通过对孔加工技术等技术的最新精密加工发展来论述目前国内精密加工发展趋势及前景;同时通过对美日欧等发达国家最新的精密加工技术发展情况来论述目前国外精密加工技术的发展方向及前景。关键词:精加工;发展;应用II目录内容摘要...........................................................................................................................I引言..............................................................................................................................11精密加工技术的发展现状........................................................................................11.1砂带研磨.........................................................................................................11.2精密切削.........................................................................................................11.3超精密磨削.....................................................................................................21.4珩磨.................................................................................................................31.5精密研磨.........................................................................................................31.6抛光.................................................................................................................32国内精密加工技术发展趋势....................................................................................52.1北京机床研究所..............................................................错误!未定义书签。2.2航天航空工业部三零三部所..........................................错误!未定义书签。3.3其他研究所......................................................................错误!未定义书签。3.4超精密加工技术发展趋势..............................................错误!未定义书签。3国外精密加工技术发展前景....................................................................................83.1美国.................................................................................................................83.1欧洲.................................................................................................................83.2日本.................................................................................................................84研究和探讨................................................................................................................94.1精密加工技术.................................................................................................94.2开发精密的机械机构.....................................................................................94.3开发高精度的测试系统.................................................................................94.4开发适用于精密加工并能取得高精度、高表面质量的新型材料...........105结论..........................................................................................................................11参考文献........................................................................................................................121引言为了满足现代先进制造与加工技术的需要,提高生产效率和改善零件的加工质量,精密加工技术和超精密加工技术已成为目前高科技技术领域的基础,超精密加工技术已成为社会生产发展的一个重大趋势。1精密加工技术的发展现状1.1砂带研磨砂带研磨是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具削加工的范畴,有生产率高、表面质量好,使用范围广等特点。国外在砂带材料及制作工艺上取得了很大的成就,有了适应于不同场合的砂带系列,生产出通用和专用的砂带磨床,而且自动化程度不断提高(己有全自动和自适应控制的砂带磨床),但国内砂带品种少,质量也有待提高,对机床还处于改造阶段。砂带研磨的特点及应用如以下:(1、CBN的硬度比普通磨料高很多。特别是适合加工硬度高,韧性大,高温,强度高,热导性率低的材料,其金属磨除率也是金刚石的10倍。(2、CBN磨具的磨削性能十分优异,不仅能够胜任难磨材料的加工,提高生产效率,而且有利于严格控制工件的形状和尺寸精度,还能有效提高磨削质量,显著提高磨削后工具的表面完整性,因而提高了零件的疲劳强度,延长了使用寿命,增加了可靠性。(3、CBN磨具磨损少,使用周期长,磨削比较高,使用合理可获得良好的经济效果。(4、CBN磨具使用时,形状和尺寸变化极为缓慢,更适用于CBN数控加工中心高精度零件。(5、能长时间保持锋利的切削力,故磨削力较小,有利于零件的精度和光洁度的提高,还可以减少机床的动力消耗。(6、磨削温度较低,可以大大提高工件的表面质量,避免零件出现裂纹、烧伤、组织变化等弊病,改善加工表面应力状况,有利于零件使用寿命的延长。(7、普通磨料砂带在人工使用过程中产生大量粉尘,对人体健康有害,长期使用会引发矽肺病1.2精密切削也称金刚石刀具切削(SPDT),是用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、2磁盘及大功率激光用的金属反光镜等,比一般加工精密要高1---2个等级。例如用精密车削加工的液压马达转子柱塞孔圆柱度为0.5~1μm,红外反光镜的表面粗糙度Ra0.01~0.02μm,还具有较好的光学性质[1]。从成本上看,用精密切削加工的光学反射镜,与过去用镀铬经磨削加工的产品相比,成本大约是后者的一半或几分之一。但许多因素对精密切削的效果有影响,所以要达到预期的效果很不容易。同时,金刚石刀具切削较硬的材料时磨损较快,如切削黑色时磨损速度比切削铜104倍,而且加工出的工件的表面粗糙度和几何形状精度均不理想。1.3超精密磨削用精确修整过的砂轮在精密磨床上进行的微量磨削加工,金属的去除量可在亚微米级甚至更小,可以达到很高的尺寸精度、形位精度和很低的表面粗糙度值。尺寸精度0.1—0.3µm,表面粗糙度Ra0.2—0.05µm,效率高,应用范围广泛,从软金属到淬火钢、不锈钢、高速钢等难切削材料,及半导体、玻璃、陶瓷等硬脆非金属材料,几乎所有的材料都可以利用磨削进行加工。但磨削加工后,被加工的表面在磨削力及磨削热的作用下金相组织要发生变化,易产生加工硬化、淬火硬化、热应力层、残余应力层和磨削裂纹等缺陷,需要合理管控。超精密磨削技术是在一般精密磨削基础上发展起来的。超精密磨削不仅要提供镜面级的表面粗糙度,还要保证获得精确的几何形状和尺寸。为此,除要考虑各种工艺因素外,还必须有高精度、高刚度以及高阻尼特征的基准部件,消除各种动态误差的影响,并采取高精度检测手段和补偿手段。目前超精密磨削的加工对象主要是玻璃、陶瓷等硬脆材料,磨削加工的目标是范成3—5nm的平滑表面,也就是通过磨削加工而不需抛光即可达到要求的表面粗糙度。作为纳米级磨削加工,要求机床具有高精度及高刚度,脆性材料可进行可延性磨削(DuctileGrinding)。纳米磨削技术对燃气涡轮发动机,特别是对要求高疲劳强度材料(如飞机的喷气发动机涡轮用的陶瓷材料)的加工,是重要而有效的加工技术。此外,砂轮的修整技术也相当关键。尽管磨削比研磨更能有效地去除物质,但在磨削玻璃或陶瓷时很难获得镜面,主要是由于砂轮粒度太细时,砂轮表面容易被切屑堵塞。日本理化学研究所学者大森整博士发明的电解在线修整(ELID)铸铁纤维结合剂(CIFB)砂轮技术可以很好地解决这个问题。当前的超精密磨削技术能加工出0.01μm圆度,O.1μm尺寸精度和Ra0.005μm粗糙度的圆柱形零件,平面超精密磨削能加工出0.03μm/100mm的平面。31.4珩磨珩磨是用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后表面粗糙度可达Ra0.4—0.1µm,最好可到Ra0.025µm,主要用来加工铸铁及钢,不宜用来加工硬度小韧性好的有色金属。珩磨是磨削加工的特殊形式,它的实质是低速磨削,也是一种高效率的光整加工方法。珩磨头外周镶有1~18根长度约为孔长1/3~3/4的珩磨条,在珩孔时既旋转运动又往返运动,同时通过珩磨头中的弹簧或液压控制而均匀外涨,所以与孔表面的接触面积较大,加工效率较高。它具有以下加工特点:(1)珩磨的表面质量好,珩磨后表面粗糙度可达Ra0.8—0.2(2)交叉网纹有利于贮油润滑,实现平顶珩磨,去除网纹的顶尖,可获得较好的相对运动摩擦,获得较理想的表面质量。(3)加工精度高,圆度、圆柱度可达0.5μm;轴线直线度可达1μm。1