单片机控制交通灯(内含程序和实物图)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第四组I模拟交通灯控制系统摘要:随着经济发展,汽车数量急剧增加,城市道路日渐拥挤,交通拥塞已成为一个国际性的问题。因此,设计可靠、安全、便捷的多功能交通灯控制系统有极大的现实必要性。根据交通灯在实际控制中的特点,结合单片机的控制功能,提出了一种用单片机自动控制交通灯的简易方法。设计中包括硬件电路的设计和程序设计两大步骤,对单片机学习中的几个重要内容都有涉足。单片机的应用正在不断深入,单片机可以用来仿真各个系统。在自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构软硬件结合,加以完善。十字路口车辆穿梭,行人熙攘,车行车道,人行人道,有条不紊。那么靠什么来实现这井然秩序呢?靠的就是交通信号灯的自动指挥系统。交通信号灯控制方式很多。本系统采用单片机STC89C52为中心器件来设计交通灯控制器,实现了通过P1口设置红、绿灯燃亮时间的功能;红绿灯循环点亮,倒计时剩5秒时黄灯闪烁警示(交通灯信号通过P1口输出,显示时间通过P0口输出至双位数码管)。本系统设计周期短、可靠性高、实用性强、操作简单、维护方便、扩展功能强。关键词:单片机交通灯数码管模拟交通灯控制系统第四组11.背景简介及原理分析1.1交通灯发展概述早在1850年,城市交叉口处不断增长的交通就引发了人们对安全和拥堵的关注。世界上第一台交通自动信号灯的诞生,拉开了城市交通控制的序幕,1868年,英国工程师纳伊特在伦敦威斯特敏斯特街口安装了一台红绿两色的煤气照明灯,用来控制交叉路口马车的通行,但一次煤气爆炸事故致使这种交通信号灯几乎销声匿迹了近半个世纪。1914年及稍晚一些时候,美国的克利夫兰、纽约和芝加哥才重新出现了交通信号灯,它们采用电力驱动,与现在意义上的信号灯已经相差无几。1926年英国人第一次安装和使用自动化的控制器来控制交通信号灯,这是城市交通自动控制的起点。伴随着城市交通信号控制系统的迅速发展。人们认识到,要更好地提高城市管理水平,不仅仅依靠硬件设备的更新和改进,还必须同时在控制逻辑和方法上有所突破,即城市交通的区域协调控制。传统的城市道路交通控制指的是区域交叉口信号灯控制,而城市交通的区域协调控制,是在整个城市范围内对交通进行控制,这无论是从理论角度还是实践角度,都是一个极其复杂的大系统控制问题。可以说,在近百年的发展中,道路交通信号控制系统经历了无感应控制到有感应控制、手动控制到自动控制再到智能控制、单点控制(点控)到干线控制(线控)再到区域控制和网络控制(面控)的过程。1.2课题背景及意义当今,红绿灯安装在各个道口上,已经成为疏导交通车辆最常见和最有效的手段。但这一技术在19世纪就已出现了。1858年,在英国伦敦主要街头安装了以燃煤气为光源的红,蓝两色的机械扳手式信号灯,用以指挥马车通行。这是世界上最早的交通信号灯。1868年,英国机械工程师纳伊特在伦敦威斯敏斯特区的议会大厦前的广场上,安装了世界上最早的煤气红绿灯。它由红绿两以旋转式方形玻璃提灯组成,红色表示“停止”,绿色表示“注意”。1869年1月2日,煤气灯爆炸,使警察受伤,遂被取消。电气启动的红绿灯出现在美国,这种红绿灯由红绿黄三色圆形的投光器组成,1914年始安装于纽约市5号大街的一座高塔上。红灯亮表示“停止”,绿灯亮表示“通行”。1918年,又出现了带控制的红绿灯和红外线红绿灯。带控制的红绿灯,一种是把压力探测器安在地下,车辆一接近红灯便变为绿灯;另一种是用扩音器来启动红绿灯,司机遇红灯时按一下嗽叭,就使红灯变为绿灯。红外线红绿灯当行人踏上对压力敏感的路面时,它就能察觉到有人要过马路。红外光束能把信号灯的红灯延长一段时间,推迟汽车放行,以免发生交通事故。信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。1968年,联合国《道路交通和道路标志信号协定》对各种信号灯的含义作了规定。绿灯是通行信号,面对绿灯的车辆可以直行,左转弯和右转弯,除非另一种标志禁止某一种转向。左右转弯车辆都必须让合法地正在路口内行驶的车辆和过人行横道的行人优先通行。红灯是禁行信号,面对红灯的车辆必须在交叉路口的停车线后停车。黄灯是警告信号,面对黄灯的车辆模拟交通灯控制系统第四组2不能越过停车线,但车辆已十分接近停车线而不能安全停车时可以进入交叉路口。如果将每个交通十字路口的多余交通警察撤回,安排在最不利于管理和事故高发的地方,不但可以大大的降低交通事故的发生率,而且可以节省大量的人力财力。所以,采用单片机自动控制交通灯有现实的社会意义。1.3课题任务及主要实现内容本系统由单片机系统、数码管显示、交通灯显示系统组成。系统除基本的交通功能外,还具有倒计时,时间设置。东西、南北两个干道交于一个十字路口,各干道有一组红、绿、黄三色的指示灯。红灯亮禁止通行,绿灯亮允许通行。黄灯亮提示人们注意红、绿灯的状态即将切换。程序开始运行先南北段通行、东西段禁止90s西段通行、南北段禁止90s此循环。系统分三种工作模式:正常模式、繁忙模式、特殊模式,并且通过三个按钮“正常”、“繁忙”、“特殊”可相互转化。正常模式:直行时间显示数码管显示90s南北段直行通行(绿灯)、东西段禁止(红灯)80s时南北段和东西段方向的数码管分别从80s和90s时,至最后5s时南北段绿灯变成黄灯闪烁,之后南北向变成红灯,东西方向路灯直行。繁忙模式:南北段、东西段的通行时间改为45s,其它与正常模式类似。特殊模式:特殊模式灯亮,南北段、东西段的通行时间改为0s,禁止左转和直行,东西南北四个方向都亮红灯。1.4原理分析1.4.1交通灯显示时序的理论分析下图所示为一种红绿灯规则的状态图:图1-1状态S1南北直行通行图1-2状态S2东西直行通行模拟交通灯控制系统第四组3辆行驶的状态图,可以列出各个路口灯的逻辑表如下表所示(其中逻辑值“1”代表直行通行,逻辑值“0”代表禁止通行,逻辑值“L”代表左拐通行):表1-1逻辑值ENWNS10101S20L0L1.4.2交通灯显示的理论分析倒计时显示的理论分析:利用定时器中断,设TH0=TH1=(65536-50000)/256,即每0.05秒中断一次。每到第20次中断即过了20*0.05秒=1秒时,使时间的计数值减1,便实现了倒计时的功能。状态灯显示的理论分析:黄灯闪烁同样可以利用定时器中断。每到第10次中断即过了10*0.05秒=0.5秒时,使黄灯标志位反置,即可让黄灯1秒闪烁一次。模拟交通灯控制系统第四组42.方案分析:本设计实现的交通灯是一款的多功能交通灯,预期实现的主要功能如下。1.具有时间显示功能,数码管倒计时功能;2.红绿灯具有两状态,南北直行,东西直行;3.具有模式转换功能,切换到不同状态,交通灯通行时间不一样;2.1单片机与外围接口部件根据课题任务的要求,该系统具有交通灯的显示功能,倒计时功能,改变时间设定功能,所以把系统分为几个模块,包括倒计时显示器、交通信号灯、控制模块。系统硬件框图如下图2-1:图2-1硬件框图模拟交通灯控制系统第四组5该系统主控芯片单片机采用MCS-8051,它内部具有128个8位用户数据存储单元和128个专用寄存器单元,两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向,可以满足该控制程序系统的设计要求。2.2倒计时显示界面该系统要求完成倒计时、状态灯等功能。基于上述原因,我们考虑了二种方案:方案一:完全采用数码管显示。显示简单,程序简单,端口用的少。法案二:完全采用点阵式LED显示。这种方案实现复杂,且须完成大量的软件工作。但功能强大,可方便的显示各种英文字符,汉字,图形等。权衡利弊,第一种的方案适合于此题,我们决定采用方案二实现系统的时间显示2.3交通灯发光二极管简称为LED,在此处设计中我们用他来模拟红绿黄交通灯,普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、脉冲等电源驱动点亮。它属于电流控制型半导体器件,使用时需串接合适的限流电阻。模拟交通灯控制系统第四组63硬件系统设计3.1单片机的选择1.常用单片机的比较目前在单片机系统中,应用较广泛的微处理器芯片主要为8XC5X系列单片机。该系列单片机均采用标准MCS-51内核,硬件资源相互兼容,品类齐全,功能完善,性能稳定,体积小,价格低廉,货源充足,调试和编程方便,所以应用极为广泛。若采用89C51芯片作为硬件核心,采用FlashROM,内部具有4KBROM存储空间,能于3V的超低电压工作,而且与MCS-51系列单片机完全兼容,但是运用于电路设计中时由于不具备ISP在线编程技术,当在对电路进行调试时,由于程序的错误修改或对程序的新增功能需要烧入程序时,对芯片的多次插拔会对芯片造成一定的损坏。若采用STC89C52单片机则不同,STC89C52是一个低电压,高性能CMOS8位单片机,片内含有4KB的可反复擦写的Flash只读程序存储器和128bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-52指令系统,片内置通用8位中央处理器和Flash存储单元。可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效的降低开发成本。2.STC89C52简介(1)STC89C52基本特性STC89C52是一种低功耗、高性能CMOS8位微控制器,具有8K在系统可编程Flash存储器。使用高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。(2)功能STC89C52具有以下标准功能:8K字节Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,STC89C52可降至0Hz静态逻辑操作,支持2种软件可选择节点模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,指导下一个中断或硬件复位为止。(3)引脚说明模拟交通灯控制系统第四组7图3-1STC89C52引脚图引脚如图3-1所示:VCC:供电电压。GND:接地。P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8个TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4个TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流这是由于上拉的缘故。P3口也可作为STC89C52的一些特殊功能口,如下表3-

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功