第3节圆周运动(1)匀速圆周运动是匀变速曲线运动。()(2)物体做匀速圆周运动时,其角速度是不变的。()(3)物体做匀速圆周运动时,其合外力是不变的。()(4)匀速圆周运动的向心加速度与半径成反比。()(5)匀速圆周运动的向心力是产生向心加速度的原因。()(6)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢,看周期或角速度。()(7)做匀速圆周运动的物体,当合外力突然减小时,物体将沿切线方向飞出。()(8)摩托车转弯时速度过大就会向外发生滑动,这是摩托车受沿转弯半径向外的离心力作用的缘故。()×××××√√√要点一圆周运动的运动学问题1.圆周运动各物理量间的关系2.对公式v=ωr的理解当r一定时,v与ω成正比;当ω一定时,v与r成正比;当v一定时,ω与r成反比。3.对a=v2r=ω2r的理解当v一定时,a与r成反比;当ω一定时,a与r成正比。4.常见的三种传动方式及特点(1)皮带传动:如图431甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即vA=vB。图431(2)摩擦传动:如图432甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即vA=vB。图432(3)同轴传动:如图乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA=ωB。[多角练通]1.(2016·广州调研)如图433所示,当正方形薄板绕着过其中心O并与板垂直的转动轴转动时,板上A、B两点()A.角速度之比ωA∶ωB=2∶1B.角速度之比ωA∶ωB=1∶2C.线速度之比vA∶vB=2∶1D.线速度之比vA∶vB=1∶2图433解析2.(多选)如图434所示为一链条传动装置的示意图。已知主动轮是逆时针转动的,转速为n,主动轮和从动轮的齿数比为k,以下说法中正确的是()A.从动轮是顺时针转动的B.主动轮和从动轮边缘的线速度大小相等C.从动轮的转速为nkD.从动轮的转速为nk图434解析3.(2016·桂林模拟)如图435所示,B和C是一组塔轮,即B和C半径不同,但固定在同一转动轴上,其半径之比为RB∶RC=3∶2,A轮的半径大小与C轮相同,它与B轮紧靠在一起,当A轮绕过其中心的竖直轴转动时,由于摩擦作用,B轮也随之无滑动地转动起来。a、b、c分别为三轮边缘的三个点,则a、b、c三点在运动过程中的()A.线速度大小之比为3∶2∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D.向心加速度大小之比为9∶6∶4图435解析要点二水平面内的匀速圆周运动1.匀速圆周运动的受力特点:(1)物体所受合外力大小不变,方向总是指向圆心。(2)合外力充当向心力。2.解答匀速圆周运动问题的一般步骤:(1)选择做匀速圆周运动的物体作为研究对象。(2)分析物体受力情况,其合外力提供向心力。(3)由Fn=mv2r或Fn=mω2r或Fn=m4π2rT2列方程求解。[典例](多选)(2014·全国卷Ⅰ)如图436,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l。木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g。若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()图436A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg[审题指导](1)小木块a和b在相对圆盘滑动之前具有相同的角速度。(2)小木块恰好滑动时,最大静摩擦力提供向心力。解析[方法规律]求解圆周运动问题必须进行的三个分析几何分析目的是确定圆周运动的圆心、半径等运动分析目的是确定圆周运动的线速度、角速度、向心加速度等受力分析目的是通过力的合成与分解,表示出物体做圆周运动时,外界所提供的向心力[针对训练]1.(2016·河南二模)如图437所示,一个圆形框架以竖直的直径为转轴匀速转动。在框架上套着两个质量相等的小球A、B,小球A、B到竖直转轴的距离相等,它们与圆形框架保持相对静止。下列说法正确的是()A.小球A的合力小于小球B的合力B.小球A与框架间可能没有摩擦力C.小球B与框架间可能没有摩擦力D.圆形框架以更大的角速度转动,小球B受到的摩擦力一定增大图437解析2.如图438所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相等的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则以下说法中正确的是()解析图438A.A球的角速度等于B球的角速度B.A球的线速度大于B球的线速度C.A球的运动周期小于B球的运动周期D.A球对筒壁的压力大于B球对筒壁的压力3.(多选)(2016·安阳二模)如图439所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是()A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B对A的动摩擦因数μA小于盘对B的动摩擦因数μB图439解析解析:根据Fn=mrω2,因为两物块的角速度大小相等,转动半径相等,质量相等,则向心力相等,故A错误;对AB整体分析,fB=2mrω2,对A分析,有:fA=mrω2,知盘对B的摩擦力是B对A的摩擦力的2倍,故B正确;A所受的静摩擦力方向指向圆心,可知A有沿半径向外滑动的趋势,B受到盘的静摩擦力方向指向圆心,有沿半径向外滑动的趋势,故C正确;对AB整体分析,μB2mg=2mrωB2,解得ωB=μBgr,对A分析,μAmg=mrωA2,解得ωA=μAgr,因为B先滑动,可知B先达到临界角速度,可知B的临界角速度较小,即μB<μA,故D错误。答案:BC要点三竖直平面内的圆周运动1.轻绳和轻杆模型概述在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类。一是无支撑(如球与绳连接,沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接,小球在弯管内运动等),称为“轻杆模型”。2.两类模型对比轻绳模型轻杆模型情景图示弹力特征弹力可能向下,也可能等于零弹力可能向下,可能向上,也可能等于零受力示意图轻绳模型轻杆模型力学方程临界特征v=0,即F向=0,此时FN=mg物体能否过最高点的临界点FN表现为拉力还是支持力的临界点mg+FT=mv2rmg±FN=mv2rFT=0,即mg=mv2r,得v=grv=gr的意义[典例](2016·烟台模拟)一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R的圆周运动,如图4310所示,则下列说法正确的是()A.小球过最高点时,杆所受到的弹力可以等于零B.小球过最高点的最小速度是gRC.小球过最高点时,杆对球的作用力一定随速度增大而增大D.小球过最高点时,杆对球的作用力一定随速度增大而减小图4310解析[方法规律][针对训练]1.如图4311所示,乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转,下列说法正确的是()A.过山车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B.人在最高点时对座位不可能产生大小为mg的压力C.人在最低点时对座位的压力等于mgD.人在最低点时对座位的压力大于mg图4311解析A.轻杆转到水平位置时两球的加速度大小相等B.轻杆转到竖直位置时两球的加速度大小不相等C.运动过程中A球速度的最大值为4gR3D.当A球运动到最低点时,两小球对轨道作用力的合力大小为133mg解析2.(多选)(2016·宜昌联考)如图4312所示,半径为R的光滑细圆环轨道被固定在竖直平面上,轨道正上方和正下方分别有质量为2m和m的静止小球A、B,它们由长为2R的轻杆固定连接,圆环轨道内壁开有环形小槽,可使细杆无摩擦、无障碍地绕其中心点转动。今对上方小球A施加微小扰动。两球开始运动后,下列说法正确的是()图43123.如图4313所示,轻绳的一端固定在O点,另一端系一质量为m的小球(可视为质点)。当小球在竖直平面内沿逆时针方向做圆周运动时,通过传感器测得轻绳拉力T、轻绳与竖直线OP的夹角θ满足关系式T=a+bcosθ,式中a、b为常数。若不计空气阻力,则当地的重力加速度为()A.b2mB.2bmC.3bmD.b3m图4313解析在斜面上做圆周运动的物体,因所受的控制因素不同,如静摩擦力控制、绳控制、杆控制,物体的受力情况和所遵循的规律也不相同。下面列举三类实例。斜面上圆周运动的临界问题(一)静摩擦力控制下的圆周运动1.(2014·安徽高考)如图4314所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5m处有一小物体与圆盘始终保持相对静止。物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10m/s2。则ω的最大值是()图4314解析A.5rad/sB.3rad/sC.1.0rad/sD.5rad/s(二)轻杆控制下的圆周运动2.如图4315所示,在倾角为α=30°的光滑斜面上,有一根长为L=0.8m的轻杆,一端固定在O点,另一端系一质量为m=0.2kg的小球,沿斜面做圆周运动,取g=10m/s2,若要小球能通过最高点A,则小球在最低点B的最小速度是()解析A.4m/sB.210m/sC.25m/sD.22m/s图4315(三)轻绳控制下的圆周运动3.(2016·开封模拟)如图4316所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角。板上一根长为l=0.60m的轻细绳,它的一端系住一质量为m的小球P,另一端固定在板上的O点。当平板的倾角固定为α时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0m/s。若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=10m/s2)图4316解析结束“课后演练·对点设计”见“课时跟踪检测(十三)”(单击进入电子文档)