第三章3-1半径为R、质量为M的均匀薄圆盘上,挖去一个直径为R的圆孔,孔的中心在12R处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。分析:用补偿法(负质量法)求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。注意对同一轴而言。解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112JMR①由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232cMRMRJJmdMR②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332JJJMR3-2如题图3-2所示,一根均匀细铁丝,质量为M,长度为L,在其中点O处弯成120角,放在xOy平面内,求铁丝对Ox轴、Oy轴、Oz轴的转动惯量。分析:取微元,由转动惯量的定义求积分可得解:(1)对x轴的转动惯量为:2022201(sin60)32LxMJrdmldlMLL(2)对y轴的转动惯量为:20222015()(sin30)32296LyMLMJldlMLL(3)对Z轴的转动惯量为:22112()32212zMLJML3-3电风扇开启电源后经过5s达到额定转速,此时角速度为每秒5转,关闭电源后经过16s风扇停止转动,已知风扇转动惯量为20.5kgm,且摩擦力矩fM和电磁力矩M均为常量,求电机的电磁力矩M。分析:fM,M为常量,开启电源5s内是匀加速转动,关闭电源16s内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M。解:由定轴转动定律得:1fMMJ,即11252520.50.54.12516fMJMJJNm3-4飞轮的质量为60kg,直径为0.5m,转速为1000/minr,现要求在5s内使其制动,求制动力F,假定闸瓦与飞轮之间的摩擦系数0.4,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。分析:分别考虑两个研究对象:闸瓦和杆。对象闸瓦对飞轮的摩擦力f对O点的力矩使飞轮逐渐停止转动,对飞由轮转动定律列方程,因摩擦系数是定值,则飞轮做匀角加速度运动,由转速求角加速度。对象杆受的合力矩为零。题图3-2解:设闸瓦对飞轮的压力为N,摩擦力为f,力矩为M,飞轮半径为R,则依题意得,MfRJ①0.4fNN②(0.50.75)0.5FN③22600.25JmR④10002605⑤解:①②③④⑤式得314FN3-5一质量为m的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如题图3-5所示.轴水平且垂直于轮轴面,其半径为r,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t内下降了一段距离S.试求整个轮轴的转动惯量(用rtmS、、和表示).分析:隔离物体,分别画出轮和物体的受力图,由转动定律和牛顿第二定律及运动学方程求解。解:设绳子对物体(或绳子对轮轴)的拉力为T,则根据牛顿运动定律和转动定律得:mgTma①JTr②由运动学关系有:ar③由①、②、③式解得:2(-)Jmgara④又根据已知条件00v212Sat,22Sat⑤将⑤式代入④式得:22(1)2gtJmrS3-6一轴承光滑的定滑轮,质量为2.00,Mkg半径为0.100,Rm一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为5.00,mkg的物体,如题图3-6所示.已知定滑轮的转动惯量为212JMR,其初角速度010.0/,rads方向垂直纸面向里.求:(1)定滑轮的角加速度的大小和方向;(2)定滑轮的角速度变化到0时,物体上升的高度;(3)当物体回到原来位置时,定滑轮的角速度的大小和方向分析:隔离体受力分析,对平动物体由牛顿第二定律列方程,对定轴转动物体由转动定律列方程。解:(1)∵mgTmaRJTRa∴2222281.7/122mgRmgRmgradsmRJmMRmRMR题图3-4mMR0题图3-6TrTamg题图3-5mOr题图3-5方向垂直纸面向外(2)∵2202当0时,rad612.0220物体上升的高度26.1210mhR(3)210.0/rads方向垂直纸面向外.3-7如题图3-7所示,质量为m的物体与绕在质量为M的定滑轮上的轻绳相连,设定滑轮质量M=2m,半径R,转轴光滑,设00tv时,求:(1)下落速度与时间t的关系;(2)4ts时,m下落的距离;(3)绳中的张力T。分析:对质量为m物体应用牛顿第二定律、对滑轮应用刚体定轴转动定律列方程。解:(1)设物体m与滑轮间的拉力大小为T,则mgTma①212MTRJMR②aR③vat④解:①②③式得24.9/ams,并代入④式得4.9vt(2)设物体下落的距离为s,则22114.9439.222satm(3)由(1)的②式得,4.9TmgmaN3-8如题图3-8所示,一个组合滑轮由两个匀质的圆盘固接而成,大盘质量110Mkg,半径0.10Rm,小盘质量24Mkg,半径0.05rm。两盘边缘上分别绕有细绳,细绳的下端各悬质量122mmkg的物体,此物体由静止释放,求:两物体12,mm的加速度大小及方向。分析:分别对物体12,mm应用牛顿第二定律,对滑轮应用刚体定轴转动定律解:设物体12,mm的加速度大小分别为12,,aa与滑轮的拉力分别为12,,TT1111Tmgma①2222mgTma②1ar③2aR④21MTRTrJ⑤题图3-7题图3-8TTmga图3-622121122JMRMr⑥把数据代入,解上述各式得210.6125/ams方向向上221.225/ams方向向下3-9如题图3-9所示,一倾角为30°的光滑斜面固定在水平面上,其上装有一个定滑轮,若一根轻绳跨过它,两端分别与质量都为m的物体1和物体2相连。(1)若不考虑滑轮的质量,求物体1的加速度。(2)若滑轮半径为r,其转动惯量可用m和r表示为2Jkmr(k是已知常量),绳子与滑轮之间无相对滑动,再求物体1的加速度。分析:(1)对两物体分别应用牛顿第二定律列方程。(2)两物体分别应用牛顿第二定律、对滑轮应用刚体定轴转动定律列方程。解:设物体1、物体2与滑轮间的拉力分别为1T、2T它们对地的加速度为a。(1)若不考虑滑轮的质量,则物体1、物体2与滑轮间的拉力1T、2T相等,记为T。则对1、2两物体分别应用牛顿第二定律得,0sin30mgTmaTmgma解上两式得:2/4/agms,方向竖直向下。(2)若考虑滑轮的质量,则物体1、物体2与滑轮间的拉力1T、2T不相等。则对1、2两物体分别应用牛顿第二定律,和对滑轮应用刚体定轴转动定律得1mgTma①02sin30Tmgma②ar③12MTrTrJ④2Jkmr⑤解上述各式得:2/2(2)gamsk,方向竖直向下。3-10一飞轮直径为0.3m,质量为5.0kg,边缘绕有绳子,现用恒力拉绳子的一端,使其由静止均匀地绕中心轴加速,经0.5s转速达每秒10转,假定飞轮可看作实心圆柱体,求:(1)飞轮的角加速度及在这段时间内转过的转数;(2)拉力及拉力所作的功;(3)从拉动后10ts时飞轮的角速度及轮边缘上一点的速度和加速度。分析:利用转动定律,力矩作的功定义,线量与角量的关系求解。解:(1)角加速度为:221021.2610/0.5radst转过的角度为:222111.26100.515.722trad转过的圈数为:2.52N圈题图3-9(2)由转动定律MfRJ得220.550.151.261047.10.15JfNR力矩做的功为:047.10.1515.7111AMdMJ(3)角速度为:231.2610101.2610/trads边缘一点的线速度为:320.151.26101.8810/vRms边缘一点的法向加速度为:226520.151.26102.3710/naRms边缘一点的切向加速度为:220.151.261018.84/aRms3-11一质量为M,长为l的匀质细杆,一端固接一质量为m的小球,可绕杆的另一端O无摩擦地在竖直平面内转动,现将小球从水平位置A向下抛射,使球恰好通过最高点C,如题图3-11所示。求:(1)下抛初速度0v;(2)在最低点B时,细杆对球的作用力。分析:由机械能守恒定律、牛顿第二定律、角线量关系求解。解:(1)如图3-11,取向下抛点作势能零点,由机械能守恒定律得,22011222lmvJMgmgl①J=213Ml②0vl③解①②③得,0(36)3MmglvmM(2)取最低点作势能零点,由机械能守恒定律和牛顿第二定律得,2211222mvJMglmgl①2vNmgml②vl③213JMl④解:①②③④得,1573mMNmgmM3-12物体质量为3,0kgt时位于14,6rimijms,如一恒力5fjN作用在物体上,求3s后,(1)物体动量的变化;(2)相对z轴角动量的变化。分析:写出)(tr的表达式及力f对Z轴的力矩M。由动量定理、角动量定理求解。解:(1)由动量定理得,动量的增量为:3100515tPfdtjdtjkgms(2)由角动量定理得,角动量的增量为:题图3-11030ttLMdtMdt①而()Mrtf②22000015()()()()()(4)(6)26xyrtxtiytjxvtiyvtatjtittj③5fj④把③④代入②解得:(205)Mtk⑤把⑤代入①解得:332100(205)82.5LMdttkdtkkgms3-13水平面内有一静止的长为L、质量为m的细棒,可绕通过棒一末端的固定点在水平面内转动。今有一质量为12m、速率为v的子弹在水平面内沿棒的垂直方向射向棒的中点,子弹穿出时速率减为12v,当棒转动后,设棒上单位长度受到的阻力正比于该点的速率(比例系数为k)试求:(1)子弹穿出时,棒的角速度0为多少?(2)当棒以转动时,受到的阻力矩fM为多大?(3)棒从0变为012时,经历的时间为多少?分析:把子弹与棒看作一个系统,子弹击穿棒的过程中,转轴处的作用力的力矩为零,所以击穿前后系统角动量守恒,可求待击穿瞬间棒的角速度。棒转动过程中,对棒划微元计算元阻力矩,积分可得总阻力矩,应用转动定律或角动量定理可求得所需时间。解:(1)以子弹和棒组成的系统为研究对象。取子弹和棒碰撞中间的任一状态分析受力,子弹与棒之间的碰撞力f、'f是内力。一对相互作用力对同一转轴来说,其力矩之和为零。因此,可以认为棒和子弹组成的系统对转轴的合外力矩为零,则系统对转轴的角动量守恒。022222213mvLmvLJJmL解上述两式得:038vL(2)设在离转轴距离为l得取一微元dl,则该微元所受的阻力为:dfkvdlkldl该微元所受的阻力对转轴的力矩为:dllkldfdMf2则细棒所受到的总阻力矩为:230013LLffMdMkldlkL(3)由刚体定轴转动定律得,313fdMJJkLdt即上式可化为:313dJkLdt对上式两边分别积分得:0032013tdJkLdt解上式积分得:33ln2JtkL把213JmL代入上式得:ln2mtkL3-14两滑冰运动员,质量分别为70AMkg,80BMkg,它们的速率17,Ams,18Bms在相距1.5m的两平行线上相向而行,当两人最接近时,便拉起手来,开