第9章模拟信号的数字传输

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第9章模拟信号的数字传输学习目标通过对本章的学习,应该掌握以下要点:(1)抽样定理;(2)自然抽样和平顶抽样;(3)均匀量化和非均匀量化;(4)PCM原理,A律13折线编、译码;(5)M原理,不过载条件和编码范围;(6)PCM、M系统的抗噪声性能(7)时分复用和多路数字电话系统原理9.1引言数字化3步骤:抽样、量化和编码图9-1抽样、量化和编码图9.2模拟信号的抽样9.2.1低通模拟信号的抽样定理抽样定理:设一个连续模拟信号m(t)中的最高频率fH,则以间隔时间为T1/2fH的周期性冲激脉冲对它抽样时,m(t)将被这些抽样值所完全确定。【证】设有一个最高频率小于fH的信号m(t)。将这个信号和周期性单位冲激脉冲T(t)相乘,其重复周期为T,重复频率为fs=1/T。乘积就是抽样信号,它是一系列间隔为T秒的强度不等的冲激脉冲。这些冲激脉冲的强度等于相应时刻上信号的抽样值。现用ms(t)=m(kT)表示此抽样信号序列。故有)()()(ttmtmTs用波形图示出如下:图9-2抽样定理波形图令M(f)、(f)和Ms(f)分别表示m(t)、T(t)和ms(t)的频谱。按照频率卷积定理,m(t)T(t)的傅里叶变换等于M(f)和(f)的卷积。因此,ms(t)的傅里叶变换Ms(f)可以写为:)()()(ffMfMs(9-1)而(f)是周期性单位冲激脉冲的频谱,它可以求出等于:nsnffTf)(1)((9-2)式中,Tfs/1将上式代入Ms(f)的卷积式,得到nssnfffMTfM)()(1)((9-3)上式中的卷积,可以利用卷积公式:)()()()()(tfdtfttf(9-4)进行计算,得到)(1)()(1)(snssnffMTnfffMTfM(9-5)上式表明,由于M(f-nfs)是信号频谱M(f)在频率轴上平移了nfs的结果,所以抽样信号的频谱Ms(f)是无数间隔频率为fs的原信号频谱M(f)相叠加而成。用频谱图示出如下图9-3抽样定理频谱图因为已经假设信号m(t)的最高频率小于fH,所以若频率间隔fs2fH,则Ms(f)中包含的每个原信号频谱M(f)之间互不重叠,如上图所示。这样就能够从Ms(f)中用一个低通滤波器分离出信号m(t)的频谱M(f),也就是能从抽样信号中恢复原信号。这里,恢复原信号的条件是:Hsff2即抽样频率fs应不小于Hf的两倍。这一最低抽样速率2fH称为奈奎斯特速率。与此相应的最小抽样时间间隔称为奈奎斯特间隔。恢复原信号的方法:从上图可以看出,当fs2fH时,用一个截止频率为fH的理想低通滤波器就能够从抽样信号中分离出原信号。从时域中看,当用抽样脉冲序列冲激此理想低通滤波器时,滤波器的输出就是一系列冲激响应之和,如下图所示。这些冲激响应之和就构成了原信号。图9-4滤波器输出冲激响应理想滤波器是不能实现的。实用滤波器的截止边缘不可能做到如此陡峭。所以,实用的抽样频率fs必须比2fH大一些。例如,典型电话信号的最高频率通常限制在3400Hz,而抽样频率通常采用8000Hz。9.2.2带通模拟信号的抽样定理设带通模拟信号的频带限制在fL和fH之间。即其频谱最低频率大于fL,最高频率小于fH,信号带宽B=fH-fL。可以证明,此带通模拟信号所需最小抽样频率fs等于)1(2nkBfs(9-6)式中,B-信号带宽;n-商(fH/B)的整数部分,n=1,2,…;k-商(fH/B)的小数部分,0k1。按照上式画出的fs和fL关系曲线示于下图:图9-5带通模拟信号的抽样定理图由于原信号频谱的最低频率fL和最高频率fH之差永远等于信号带宽B,所以当0fLB时,有BfH2B。这时n=1,而上式变成了fs=2B(1+k)。故当k从0变到1时,fs从2B变到4B,即图中左边第一段曲线。当fL=B时,fH=2B,这时n=2。故当k=0时,上式变成了fs=2B,即fs从4B跳回2B。当BfL2B时,有2BfH3B。这时,n=2,上式变成了fs=2B(1+k/2),故若k从0变到1,则fs从2B变到3B,即图中左边第二段曲线。当fL=2B时,fH=3B,这时n=3。当k=0时,上式又变成了fs=2B,即fs从3B又跳回2B。依此类推。由上图可见,当fL=0时,fs=2B,就是低通模拟信号的抽样情况;当fL很大时,fs趋近于2B。fL很大意味着这个信号是一个窄带信号。许多无线电信号,例如在无线电接收机的高频和中频系统中的信号,都是这种窄带信号。所以对于这种信号抽样,无论fH是否为B的整数倍,在理论上,都可以近似地将fs取为略大于2B。图中的曲线表示要求的最小抽样频率fs,但是这并不意味着用任何大于该值的频率抽样都能保证频谱不混叠。9.3模拟脉冲调制模拟脉冲调制的种类周期性脉冲序列有4个参量:脉冲重复周期、脉冲振幅、脉冲宽度和脉冲相位(位置)。其中脉冲重复周期(抽样周期)一般由抽样定理决定,故只有其他3个参量可以受调制。3种脉冲调制:脉冲振幅调制(PAM)脉冲宽度调制(PDM)脉冲位置调制(PPM)仍然是模拟调制,因为其代表信息的参量仍然是可以连续变化的。模拟脉冲调制波形图9-6几种模拟脉冲调制PAM调制PAM调制信号的频谱设:基带模拟信号的波形为m(t),其频谱为M(f);用这个信号对一个脉冲载波s(t)调幅,s(t)的周期为T,其频谱为S(f);脉冲宽度为,幅度为A;并设抽样信号ms(t)是m(t)和s(t)的乘积。则抽样信号ms(t)的频谱就是两者频谱的卷积:nHHsnffMfncTAfSfMfM)2()(sin)()()((9-7)式中sinc(nfH)=sin(nfH)/(nfH)PAM调制过程的波形和频谱图图9-7PAM调制过程的波形和频谱图由上图看出,若s(t)的周期T(1/2fH),或其重复频率fs2fH,则采用一个截止频率为fH的低通滤波器仍可以分离出原模拟信号。自然抽样和平顶抽样在上述PAM调制中,得到的已调信号ms(t)的脉冲顶部和原模拟信号波形相同。这种PAM常称为自然抽样。在实际应用中,则常用“抽样保持电路”产生PAM信号。这种电路的原理方框图如右:图9-8PAM自然抽样原理图平顶抽样输出波形图9-9平顶抽样输出波形平顶抽样输出频谱设保持电路的传输函数为H(f),则其输出信号的频谱MH(f)为:)()()(fHfMfMsH上式中的Ms(f)用nssnffMTfM)(1)((9-8)代入,得到nsHnffMfHTfM)()(1)((9-9)比较上面的MH(f)表示式和Ms(f)表示式可见,其区别在于和式中的每一项都被H(f)加权。因此,不能用低通滤波器恢复(解调)原始模拟信号了。但是从原理上看,若在低通滤波器之前加一个传输函数为1/H(f)的修正滤波器,就能无失真地恢复原模拟信号了。9.4抽样信号的量化9.4.1量化原理设模拟信号的抽样值为m(kT),其中T是抽样周期,k是整数。此抽样值仍然是一个取值连续的变量。若仅用N个不同的二进制数字码元来代表此抽样值的大小,则N个不同的二进制码元只能代表M=2N个不同的抽样值。因此,必须将抽样值的范围划分成M个区间,每个区间用一个电平表示。这样,共有M个离散电平,它们称为量化电平。用这M个量化电平表示连续抽样值的方法称为量化。量化器在原理上,量化过程可以认为是在一个量化器中完成的。量化器的输入信号为m(kT),输出信号为mq(kT),如下图所示。图9-10量化原理图在实际中,量化过程常是和后续的编码过程结合在一起完成的,不一定存在独立的量化器。9.4.2均匀量化均匀量化的表示式设模拟抽样信号的取值范围在a和b之间,量化电平数为M,则在均匀量化时的量化间隔为Mabv(9-10)且量化区间的端点为viamii=0,1,…,MMabv(9-11)若量化输出电平qi取为量化间隔的中点,则Mimmqiii,...,2,1,21显然,量化输出电平和量化前信号的抽样值一般不同,即量化输出电平有误差。这个误差常称为量化噪声,并用信号功率与量化噪声之比衡量其对信号影响的大小。9.4.3非均匀量化非均匀量化的目的:在实际应用中,对于给定的量化器,量化电平数M和量化间隔v都是确定的,量化噪声Nq也是确定的。但是,信号的强度可能随时间变化(例如,语音信号)。当信号小时,信号量噪比也小。所以,这种均匀量化器对于小输入信号很不利。为了克服这个缺点,改善小信号时的信号量噪比,在实际应用中常采用非均匀量化。非均匀量化的数学分析当量化区间划分很多时,在每一量化区间内压缩特性曲线可以近似看作为一段直线。因此,这段直线的斜率可以写为:ydxdyxyMabv(9-12)并有ydydxx设此压缩器的输入和输出电压范围都限制在0和1之间,即作归一化,且纵坐标y在0和1之间均匀划分成N个量化区间,则每个量化区间的间隔应该等于Ny1Mabv(9-13)将其代入上式,得到dydxNydydxx1xNdydxMabv(9-14)为了对不同的信号强度保持信号量噪比恒定,当输入电压x减小时,应当使量化间隔x按比例地减小,即要求xx因此上式可以写成xdydx或kxdydx式中,k-比例常数。上式是一个线性微分方程,其解为ckyxln为了求出常数c,将边界条件(当x=1时,y=1),代入上式,得到k+c=0故求出c=-k将c的值代入上式,得到kkyxln(9-15)即要求y=f(x)具有如下形式:xkyln11由上式看出,为了对不同的信号强度保持信号量噪比恒定,在理论上要求压缩特性具有对数特性。但是,该式不符合因果律,不能物理实现,因为当输入x=0时,输出y=-,其曲线和上图中的曲线不同。所以,在实用中这个理想压缩特性的具体形式,按照不同情况,还要作适当修正,使当x=0时,y=0。关于电话信号的压缩特性,国际电信联盟(ITU)制定了两种建议,即A压缩律和压缩律,以及相应的近似算法-13折线法和15折线法。我国大陆、欧洲各国以及国际间互连时采用A律及相应的13折线法,北美、日本和韩国等少数国家和地区采用律及15折线法。下面将分别讨论这两种压缩律及其近似实现方法。A压缩律A压缩律是指符合下式的对数压缩规律:11,ln1ln110,ln1xAAAxAxAAxy(9-16)式中,x-压缩器归一化输入电压;y-压缩器归一化输出电压;A-常数,它决定压缩程度。A律是从前式修正而来的。它由两个表示式组成。第一个表示式中的y和x成正比,是一条直线方程;第二个表示式中的y和x是对数关系,类似理论上为保持信号量噪比恒定所需的理想特性的关系。A律的导出由式xkyln11画出的曲线示于下图中。为了使此曲线通过原点,修正的办法是通过原点对此曲线作切线ob,用直线段ob代替原曲线段,就得到A律。此切点b的坐标(x1,y1)为kek/1,1或(1/A,Ax1/(1+lnA))A律是物理可实现的。其中的常数A不同,则压缩曲线的形状不同,这将特别影响小电压时的信号量噪比的大小。在实用中,选择A等于87.6。图9-11A压缩律13折线压缩特性-A律的近似A律表示式是一条平滑曲线,用电子线路很难准确地实现。这种特性很容易用数字电路来近似实现。13折线特性就是近似于A律的特性。在下图中示出了这种特性曲线:图9-1213折线特性图中横坐标x在0至1区间中分为不均匀的8段。1/2至1间的线段称为第8段;1/4至1/2间的线段称为第7段;1/8至1/4间的线段称为第6段;依此类推,直到0至1/128间的线段称为第1段。图中纵坐标y则均匀地划分作8段。将与这8段相应的座标点(x,y)相连,就得到了一条折线。由图可见,除第1和2段外,其他各段折线的斜率都不相同。在下表中列出了这些斜率因

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功