第一章固体表面1-1第一章固体表面概述因为摩擦和磨损都发生在表面上,表面的状态影响着摩擦的大小、磨损的类型以及润滑剂的选择。因此,表面是摩擦学研究的重要对象。在讨论摩擦磨损之前,首先需要对表面进行了解,正确判断表面对摩擦磨损的影响。表面的定义:在物理学中,把两种物质的界面称为表面(在弹性力学中,表面应该满足以下边界条件:其上各点的法向应力σn和切向应力τn均为零)。本文讨论的对象:几个到几十个原子(或分子)的表面膜或几个晶粒的表面层,以及几个mm的表层。通常,这个表面层的状态是复杂的。宏观上具有一定的几何形状,微观上存在各种晶格缺陷,在一定的环境下还存在各种吸附膜、反应膜和污染膜。人们将不存在其它任何物质(包括自然污染膜)的表面称作纯净表面。自然污染膜是指物体表面不是由于人为的原因,而是自然形成的表面覆盖膜,如水汽吸附膜、氧化膜或其它异物。这种表面可以在固体发生显著的塑性变形时,或表面污染膜被破坏时可能出现,也可以在真空条件下获得。裸露的纯净表面性能十分活泼,极易吸附其它物质的分子,或与其起化学作用。纯净表面摩擦时摩擦系数一般很高,同时会发生粘着(有时被称作冷焊)。1.1固体表面的几何性质第一章固体表面1-21.1.1表面粗糙度表面的凹凸不平程度与表面积之比称为表面粗糙度,是表面的亚微观状况。它直接影响摩擦系数和磨损。对于一个工程表面,不论其加工得怎样精细,从微观角度看,总是存在着某种程度的高低起伏。即工程表面都是粗糙的,不是理想光滑的表面。描述表面粗糙程度的参数称为表面粗糙度(过去也称表面光洁度)。用显微镜观察表面,如地球表面的地形。要用三维图像才能精确描述其表面形貌。如图1.1所示。如果表面加工方法有一定规律(如车、铣、刨),人们通常用二维图形来表示。(如图图1.1表面的三维形貌图第一章固体表面1-3||1||110niiLiZndxZLCLA图1.4具有相同CLA值的不同形貌1.2所示)。由于加工方法造成的宏观粗糙度呈一定方向和波长的波形(称波度)。微观粗糙度的波长很短,且具有不同的幅度和间距。表面上的微小凸起部分称微凸体。如经过抛光研磨等加工,这种波度明显消失,粗糙度显示出各向同性。描述表面粗糙度,不是用其最大的波峰波谷之差。国标(GB1031-83)规定了两种表面粗糙度的表示方法:中线平均值(CLA)和平均平方根值(均方根)(RMS)。图1.3为粗糙表面轮廓的二维示意图。先取一中线(x轴),把二维轮廓分成上下两半,并满足:中线上方的轮廓与中线所围的面积等于中线下方轮廓的面积。令从中线到轮廓的高度为Zi。①中线平均值(CLA)表示表面轮廓上各点相对于中线的算术平均偏差。②平均平方根值(均方根)(RMS)表示表面轮廓上各点相对于中线的偏差值之平方的平均值的开方。微凸体微观粗糙度宏观粗糙度图1.2粗糙表面的二维图Zi图1.3粗糙表面示意图x轴第一章固体表面1-421122102]1[]1[niiLiZndxZLRMS通常使用RMS比较好,因为,同样的CLA值其表面形貌是可以很不相同的,对摩擦磨损的影响也是不同的。如图1.4。而用RMS,图中各不相同的形貌具有不同的表面粗糙度。1.1.2表面微凸体用触针式表面轮廓仪可直接测得表面的起伏不平。不过因其高度方向的放大比例远大于平面方向的。故所得图形并不能反映峰谷起伏的实际形状。而用电子显微镜观测到的表面,因其各向放大比例相等而比较真实。由电子显微镜观测到的图形可以看到,表面上的峰与谷实际上是比较平缓的,因此人们通常取微凸体为近似的半球状、锥状或柱状来进行几何因素的分析。表面微凸体的高度各点不同,如用统计学的方法进行研究,可以画出表面轮廓上各点的高度(Zi)是个随机的变量,将其不同高度出现的频率(概率)记录下来画成光滑的曲线(图1.5),称为高度分布曲线。凡经过一般机械加工的表面,其微凸体高度的分布通常接近于正态分布(高斯分布)。正态分布曲线理论上应延伸到处。而实际上在的范围内已包括了99.5%的高度(σ为分布的标准差)。正态分布曲线高度Zi图1.5微凸体的高度分布曲线3第一章固体表面1-51.2固体表面的原子排列和结构缺陷经过不同加工过程形成的表面,因机械作用,往往导致材料的晶格扭歪、晶界开裂;由于温升导致金属发生相变而再结晶,使晶粒长大;或因为表层材料变形导致表层密度和体积发生变化,从而在表层的塑性变形层中产生残余应力,甚至产生微裂纹。金属表层内种种微观性状的改变,均对其摩擦磨损有密切的关系。因此需对其进行仔细的观察。金属表面的原子排列具有一定的形状,对于没有缺陷的纯单晶体,表面上的原子排列应是整体材料内部原子排列的延伸。不同的金属具有不同的晶体结构。图1.6所示为金属的几种典型结构。在各种晶体结构中,不同晶面上的原子密度不等。当承受载荷发生滑动时,原子密度高(原子数多)表面能低的面上,容易发生滑移。图1.7为立方晶系中几个可能滑移的晶面:(100)面、(110)面和(111)面。面心立方的(111)面和体心立方的(110)面,以及密排六方的(001)面都是原子密度高的晶面,沿这类晶面滑移的阻力最小。图1.6几种典型的晶体结构面心立方体心立方密排六方图1.7立方晶系中几个可能滑移的晶面第一章固体表面1-6但是表面的原子排列,往往不是整体材料内部原子排列的延伸,原子排列得不像理想的那样整齐。如多晶体表面有镶嵌块结构;多晶体的晶界交错,原子排列常没有规律,而且还有缺陷。如多晶体表面有镶嵌块结构。单晶体的表层也会出现各种结构缺陷(如图1.8所示)。如刀刃位错,形成通向内部的线缺陷;螺型位错,表示该处形成断层,由表面伸向内部,于是在表面上产生台阶;解理断裂形成了曲折和台阶;表面上的原子可能逸出而出现晶格空位,外来的原子可能形成填隙原子;如外来原子局域表面可形成“增附原子”;加上外部的杂质原子,使大多数金属晶体出现很多位错。这些位错在滑移时会形成台阶。见图1.5。晶体材料接触滑动而引起变形的过程中会产生位错台阶(称为表面滑移带或滑移线),滑移带的移动可能与杂质相交,生成更多的位错。位错堆积的地方会形成早期的微观裂纹。在有结构缺陷(位错、台阶或空位)的地方会发生晶粒长大、溶解、吸附或化学反应(如腐蚀)等现象。这些对摩擦磨损都有一定的影响。这类结构缺陷不仅金属会有,一些非金属晶体(如层状晶体、金刚石、氯化钠和有机润滑剂等)也存在这类结构上的缺陷。这些缺陷都比较小,需依靠现代的仪器设备才能看到。如场离子显微镜(FIM),低能电子衍射(LEED),场发射显微镜(FEM)等。图1.8表面结构缺陷模型第一章固体表面1-71.3表面张力和表面能液体受到拉向内部力的作用,使其表面肌收缩和凝聚,这种力叫表面张力。表面能是指将液体内部分子拉到表面上所需作的功。当液滴落在固体表面上时(见图1.9),由于液体具有各自的表面张力,它同时受到固体与空气的界面张力(γs)、液体与空气的界面张力(γl)和液体与固体的界面张力(γsl)的作用。当时,液滴在表面上达到平衡,且具有一固定的形态。式中:θ为固液表面间的接触角不同的液体在同种固体表面上,得到不同的接触角。接触角小的液体表面张力小。接触角的大小衡量着固体表面与液体之间的润湿性。图1.9(a)中的接触角小,表示固液间的润湿性好。而图1.9(b)中的接触角大,表示固液间的润湿性差。固体也有表面能和表面张力。固体的表面能是指将固体拉开而形成新表面时需作的功。如果固体表面十分洁净(未被污染,也无吸附膜等),则表面处于高能状态。如其它固体表面与这种表面接触,将显示出高的粘着能力,摩擦明显增大。表面能高的固体与液体接触时,具有较小的接触角,能很好地与液体润湿,使液体润滑剂能很好地与之亲和,得到低摩擦。同种液体在不同的固体表面上,也得到不同的接触角。接触角小的表示固体的表面能高。是亲水性表面。接触角大的,说明固体的表面能低,是疏水性表面。不易与液体亲和也不易γsγlγsl液滴θγlγslγs液滴(a)(b)图1.9固液界面θsllscos第一章固体表面1-8与其它固体表面粘着。对于结晶固体来说,表面能是沿晶面解理而形成新表面所需的解理能。由于晶体各面的原子数不同,原子数高的表面易于解理,即这些表面的表面能低,易于发生滑移。第一章固体表面1-91.4表面膜在一般条件下,固体表面总是被周围介质所包围。而这些介质(包括气态或液态介质)常常与固体表面发生物理与化学作用,使固体表面的结构变得更复杂。通常摩擦副由金属制成,金属表面在大气环境中总有一层薄薄的氧化膜覆盖着,氧化膜的外层还有污染膜和吸附膜等,构成了复杂的表面层。1.4.1吸附膜表面的洁净程度较高时,极易将周围介质的分子吸附到表面上形成吸附膜。如果是靠范德华力键合在表面上的称物理吸附膜。吸附的量是吸附物的分压(当吸附分子为气体时)或吸附物浓度(当吸附物为液体)和绝对温度的函数。ns=f(p,T)ns=f(c,T)式中:ns为吸附量;p为吸附气体分压;c为吸附液体浓度;T为绝对温度。吸附膜的牢固程度(吸附力的大小),可以用吸附热来衡量。吸附热是变量。开始吸附时的吸附热高,当固体表面布满吸附分子后开始第二层吸附时,固体表面与吸附分子的作用随层数增多而减弱,吸附热就逐渐降低。直到吸附热降低到没有能力再吸附时,吸附达到饱和。要除去这种吸附膜,除了机械作用外,用加热可使其脱附。故物理吸附膜是可逆的吸附膜。第一章固体表面1-10吸附分子与固体表面发生电子交换时(即改变了吸附层分子的电子分布),吸附分子与固体表面的作用是化学键结合,称化学吸附膜。其作用力比物理吸附膜强。化学吸附的吸附热值比较高,所以脱附时需要比脱附物理吸附膜更高的温度(更高的能量)。化学吸附常常是单分子层。而物理吸附则可能是多分子层。化学吸附需要一定的活化能,且与吸附剂的表面有关。所以化学吸附有一定的选择性。而物理吸附可以在任何表面上发生。在固体表面上吸附的还有污染膜。润滑剂分子可在固体表面上形成吸附膜(单分子层或多分子层)。例如,脂肪酸类的润滑剂,具有很长的分子链,这种细长的分子链被密集地吸附在固体表面上,形成具有一定刚性的边界膜,把承受载荷的接触面分开。同时,细长的分子有一定的柔性,当承载表面相对运动时,其剪切阻力很低,有明显的减摩效果。润滑剂分子中如果电子分布不均匀(不对称),则分子链的形状不对称。缺少(或多余)电荷的分子称偶极子,其一端带正电荷,另一端带负电荷,故也称为极性分子。极性分子与固体表面的亲和力很强,能牢固地附着在表面上。常用润滑剂都是长链的碳氢化合物,一端带有氨基(-NH2)、氰基(-CN)、羟基(-OH)、羧基(-COOH)等极性基。这类极性分子的吸附效果很好。如果使用的润滑剂无极性分子,可以加入少量具有极性的分子(称为油性剂),使吸附速度加快。但如果第一层已吸附饱和,则再加入极性分子已不发挥作用,有时反而有副作用。摩擦面上吸附膜的存在是一种动态过程。在摩擦过程中,可能因为微凸体使吸附膜受到机械损伤,也可能因为局部摩擦热而被解吸。同时,吸附又会在新生的表面上再次发生,所以是个动态过程。如摩擦条件更有利于解吸,则此类吸附膜的减摩作用也将大大降低。第一章固体表面1-111.4.2表面氧化膜和反应膜固体表面材料与周围介质起反应,形成的表面覆盖膜称为反应膜。化学反应总是在物质的相与相的界面上发生。化学反应必须有原子交换,即需提供一定能量,以得到反应物。如反应所需的热量越高,表示起反应的温度也越高。摩擦表面的温升如不能及时散逸,则会加快反应膜的生成速度。反应速度除与温度有关外,还与压力、浓度和是否使用催化剂有关。金属表面的氧化膜是典型的反应膜。金属固体表面在有氧环境中很容易氧化生成氧化物。氧化物多数以分层形式出现。如铁的氧化首先是氧在铁表面上的化学吸附,然后氧化层增厚。增厚过程中,往往出现孔隙和裂纹,有助于氧分子与新鲜表面的金属元素相接触而生成新的氧化物。由于氧的浓度和反应温度的不确定,故而出现不同化学成分的氧化膜。图1.10为570℃以上的氧化铁层。润滑剂吸附膜的极性端与活性的金属表面分子及其氧化物反应生成