第三章__多元线性回归模型的参数估计.

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第三章经典单方程计量经济学模型:多元线性回归模型•多元线性回归模型•多元线性回归模型的参数估计•多元线性回归模型的统计检验•多元线性回归模型的预测•回归模型的其他形式§3.1多元线性回归模型一、多元线性回归模型二、多元线性回归模型的基本假定一、多元线性回归模型多元线性回归模型:表现在线性回归模型中的解释变量有多个。一般表现形式:ikikiiiXXXY22110i=1,2…,n其中:k为解释变量的数目,j称为回归参数(regressioncoefficient)。ikikiiiXXXY22110也被称为总体回归函数的随机表达形式。它的非随机表达式为:kikiikiiiiXXXXXXYE2211021),,|(表示:各变量X值固定时Y的平均响应。习惯上:把常数项看成为一虚变量的系数,该虚变量的样本观测值始终取1。于是:模型中解释变量的数目为(k+1)总体回归模型n个随机方程的矩阵表达式为:μXβY其中j也被称为偏回归系数,表示在其他解释变量保持不变的情况下,Xj每变化1个单位时,Y的均值E(Y)的变化;或者说j给出了Xj的单位变化对Y均值的“直接”或“净”(不含其他变量)影响。)1(212221212111111knknnnkkXXXXXXXXXX1)1(210kkβ121nnμ用来估计总体回归函数的样本回归函数为:kikiiiiXXXYˆˆˆˆˆ22110其随机表示式:ikikiiiieXXXYˆˆˆˆ22110ei称为残差或剩余项(residuals),可看成是总体回归函数中随机扰动项i的近似替代。样本回归函数的矩阵表达:βXYˆˆ或eβXYˆ其中:kˆˆˆˆ10βneee21e二、多元线性回归模型的基本假定假设1,解释变量是非随机的或固定的,且各X之间互不相关(无多重共线性)。假设2,随机误差项具有零均值、同方差及不序列相关性。0)(iE22)()(iiEVar0)(),(jijiECovnjiji,,2,1,假设3,解释变量与随机项不相关0),(ijiXCovkj,2,1假设4,随机项满足正态分布),0(~2Ni上述假设的矩阵符号表示式:假设1,n(k+1)矩阵X是非随机的,且X的秩=k+1,即X满秩。假设2,0)()()(11nnEEEEμnnEE11)(μμ21121nnnEI22211100)var(),cov(),cov()var(nnn假设4,向量有一多维正态分布,即),(~2I0μN同一元回归一样,多元回归还具有如下两个重要假设:假设5,样本容量趋于无穷时,各解释变量的方差趋于有界常数,即n∞时,假设3,E(X’)=0,即0)()()(11iKiiiiiKiiiiEXEXEXXE其中:Q为一非奇异固定矩阵,矩阵x是由各解释变量的离差为元素组成的nk阶矩阵knnkxxxx1111x假设6,回归模型的设定是正确的。jjjijiQXXnxn22)(11Qxxn1或§3.2多元线性回归模型的估计一、普通最小二乘估计*二、最大或然估计*三、矩估计四、参数估计量的性质五、样本容量问题六、估计实例说明估计方法:3大类方法:OLS、ML或者MM–在经典模型中多应用OLS–在非经典模型中多应用ML或者MM–在本节中,MM为选学内容一、普通最小二乘估计•对于随机抽取的n组观测值kjniXYjii,2,1,0,,,2,1),,(如果样本函数的参数估计值已经得到,则有:KikiiiiXXXYˆˆˆˆˆ22110i=1,2…n•根据最小二乘原理,参数估计值应该是右列方程组的解0ˆ0ˆ0ˆ0ˆ210QQQQk其中2112)ˆ(niiiniiYYeQ2122110))ˆˆˆˆ((nikikiiiXXXY•于是得到关于待估参数估计值的正规方程组:kiikikikiiiiikikiiiiiikikiiikikiiXYXXXXXYXXXXXYXXXXYXXX)ˆˆˆˆ()ˆˆˆˆ()ˆˆˆˆ()ˆˆˆˆ(221102222110112211022110解该(k+1)个方程组成的线性代数方程组,即可得到(k+1)个待估参数的估计值$,,,,,jj012。k□正规方程组的矩阵形式nknkknkkiikikikiiiikiiYYYXXXXXXXXXXXXXXXXn212111211102112111111ˆˆˆ即YXβX)X(ˆ由于X’X满秩,故有YXXXβ1)(ˆ•将上述过程用矩阵表示如下:即求解方程组:0)ˆ()ˆ(ˆβXYβXYβ0)ˆˆˆˆ(ˆβXXββXYYXβYYβ0)ˆˆˆ2(ˆβXXββXYYYβ0ˆβXXYX得到:YXXXβ1)(ˆβXXYXˆ于是:例3.2.1:在例2.1.1的家庭收入-消费支出例中,53650000215002150010111111)(22121iiinnXXXnXXXXXXXX'39468400156741112121iiinnYXYYYYXXXYX可求得:0735.10003.00003.07226.0)(1EXX于是:7770.0172.10339648400156740735.10003.00003.07226.0ˆˆˆ21Eβ⃟正规方程组的另一种写法对于正规方程组βXXYXˆβXXeXβXXˆˆ于是0eX或(*)或(**)是多元线性回归模型正规方程组的另一种写法。(*)(**)0ie0iijieX⃟随机误差项的方差的无偏估计可以证明,随机误差项的方差的无偏估计量为:11ˆ22knkneiee二、最大或然估计•对于多元线性回归模型ikikiiiXXXY22110易知),(~2βXiNYi•Y的随机抽取的n组样本观测值的联合概率)ˆ()ˆ(21))ˆˆˆˆ((212122222211022)2(1)2(1),,,(),ˆ(βXYβXYβeeYYYPLnXXXYnnnkikiiin•对数或然函数为)ˆ()ˆ(21)2()(2*βXYβXYnLnLLnL对对数或然函数求极大值,也就是对)ˆ()ˆ(βXYβXY求极小值。即为变量Y的或然函数•因此,参数的最大或然估计为YXXXβ1)(ˆ结果与参数的普通最小二乘估计相同*三、矩估计(MomentMethod,MM)OLS估计是通过得到一个关于参数估计值的正规方程组YXβX)X(ˆ并对它进行求解而完成的。该正规方程组可以从另外一种思路来导:μXβYμXXβXYXμXXβ(YX)求期望:0XβYX)((E0XβYX)((E称为原总体回归方程的一组矩条件,表明了原总体回归方程所具有的内在特征。0)ˆ1βX(YXn由此得到正规方程组YX'βXX'ˆ解此正规方程组即得参数的MM估计量。易知MM估计量与OLS、ML估计量等价。矩方法是工具变量方法(InstrumentalVariables,IV)和广义矩估计方法(GeneralizedMomentMethod,GMM)的基础。•在矩方法中利用了关键是E(X’)=0•如果某个解释变量与随机项相关,只要能找到1个工具变量,仍然可以构成一组矩条件。这就是IV。•如果存在>k+1个变量与随机项不相关,可以构成一组包含>k+1方程的矩条件。这就是GMM。四、参数估计量的性质在满足基本假设的情况下,其结构参数的普通最小二乘估计、最大或然估计及矩估计仍具有:线性性、无偏性、有效性。同时,随着样本容量增加,参数估计量具有:渐近无偏性、渐近有效性、一致性。1、线性性CYYXXXβ1)(ˆ其中,C=(X’X)-1X’为一仅与固定的X有关的行向量2、无偏性βμXXXβμXβXXXYXXXβ11)()())()(())(()ˆ(1EEEE这里利用了假设:E(X’)=03、有效性(最小方差性)其中利用了YXXXβ1)(ˆμXXXβμXβXXX11)()()(和Iμμ2)(E•样本是一个重要的实际问题。模型依赖于实际样本。获取样本需要成本,企图通过样本容量的确定减轻收集数据的困难。•1、最小样本容量•2、满足基本要求的样本容量五、样本容量问题所谓“最小样本容量”,即从最小二乘原理和最大或然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。⒈最小样本容量样本最小容量必须不少于模型中解释变量的数目(包括常数项),即n≥k+1最小样本容量n≥k+1•B^=(X`X)-1X`Y•(X`X)-1存在|X`X|≠0X`X为k+1阶的满秩阵•R(AB)≤min(R(A),R(B))•R(X)≥k+1•因此,必须有•n≥k+12、满足基本要求的样本容量•从统计检验的角度:n30时,Z检验才能应用;n-k≥8时,t分布较为稳定•一般经验认为:当n≥30或者至少n≥3(k+1)时,才能说满足模型估计的基本要求。•模型的良好性质只有在大样本下才能得到理论上的证明六、多元线性回归模型的参数估计实例例3.2.2在例2.5.1中,已建立了中国居民人均消费一元线性模型。这里我们再考虑建立多元线性模型。解释变量:人均GDP:GDPP前期消费:CONSP(-1)估计区间:1979~2000年Eviews软件估计结果LS//DependentVariableisCONSSample(adjusted):19792000Includedobservations:22afteradjustingendpointsVariableCoefficientStd.Errort-StatisticProb.C120.700036.510363.3059120.0037GDPP0.2213270.0609693.6301450.0018CONSP(-1)0.4515070.1703082.6511250.0158R-squared0.995403Meandependentvar928.4946AdjustedR-squared0.994920S.D.dependentvar372.6424S.E.ofregress

1 / 81
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功