第三章液压泵和液压马达液压泵和液压马达的工作原理齿轮泵和齿轮马达叶片泵和叶片式马达柱塞泵和柱塞式液压马达§3-1液压泵和液压马达的基本工作原理轴向柱塞泵径向柱塞泵叶片泵齿轮泵定量泵轴向柱塞泵叶片泵变量泵泵泵的分类其图形如号见教材P35图3-3。低速液压马达轴向柱塞马达径向柱塞马达齿轮马达定量马达轴向柱塞马达变量马达马达马达的分类其图形如号见教材P35图3-3。一、液压泵的基本工作原理图中为单柱塞泵的工作原理。凸轮由电动机带动旋转。当凸轮推动柱塞向上运动时,柱塞和缸体形成的密封体积减小,油液从密封体积中挤出,经单向阀排到需要的地方去。当凸轮旋转至曲线的下降部位时,弹簧迫使柱塞向下,形成一定真空度,油箱中的油液在大气压力的作用下进入密封容积。凸轮使柱塞不断地升降,密封容积周期性地减小和增大,泵就不断吸油和排油。(1)容积式泵必定有一个或若干个周期变化的密封容积。密封容积变小使油液被挤出,密封容积变大时形成一定真空度,油液通过吸油管被吸入。密封容积的变换量以及变化频率决定泵的流量。(2)合适的配流装置。不同形式泵的配流装置虽然结构形式不同,但所起作用相同,并且在容积式泵中是必不可少的。容积式泵排油的压力决定于排油管道中油液所受到的负载。容积式液压泵的共同工作原理如下:二、液压泵的主要性能参数图3-2泵的实际流量和效率泵的排量是指泵每转排出液流的体积,用q(ml/r)表示。泵的流量是指泵在单位时间内排出液流的体积。其有理论流量和实际流量之分。泵的理论流量QT=qn,对于前图所示单柱塞泵,有q=d2H/4,则QT=d2Hn/4。泵的实际流量Q=QT-ΔQΔQ是泵的泄露流量。泵的实际流量和理论流量之比称为容积效率,即:PV=Q/QT=(QT-ΔQ)/QT=1-ΔQ/QT且Q=QT·PV1、排量、流量和容积效率工作压力是指泵的输出压力,其数值决定于外负载。如果负载是串联的,泵的工作压力是这些负载压力之和;如果负载是并联的,则泵的工作压力决定于并联负载中最小的负载压力。额定压力是指根据实验结果而推荐的可连续使用的最高压力,他反映了泵的能力(一般为泵铭牌上所标的压力)。在额定压力下运行时,泵有足够的流量输出,并且能保证较高的效率和寿命。最高压力比额定压力稍高,可看作是泵的能力极限。一般不希望泵长期在最高压力下运行。2、压力泵的理论功率为pQT。输入功率2πMTn。不考虑损失,根据能量守恒,有pQT=2πMTn。p—泵的出口压力;MT—驱动泵所需理论扭矩。将QT=nq代入上式,消去n得MT=pq/2π.总效率p为泵的实际输出功率pQ与实际驱动泵所需的功率2πMPn之比,即P=pQ/2πMPnMP—驱动泵所需实际扭矩。将Q=QTPv及QT=nq代入上式得:ηP=pq.Pv/2πMp又因为泵的机械效率ηPm=pq/2πMP故总功率可表示为:P=Pm.PV3、功率、机械效率和总效率设定马达的排量为q,转速为n,泄露量ΔQ则流量Q为:Q=nq+ΔQ容积效率mv=理论流量/实际流量=nq/Q=nq/(nq+ΔQ)或n=(Q/q)·mv可见,q和是mv决定液压马达转速的主要参数。三、液压马达的主要性能参数1、流量、排量和转速2、扭矩理论输出扭矩MT=pq/2π实际输出扭矩MM=MT-ΔM因机械效率Mm=MM/MT=1-ΔM/MT故MM=MT.Mm=(pq/2π).Mm可见液压马达的排量q是决定其输出扭矩的主要参数。有时采用液压马达得每弧度排量DM=q/2π来代替其每转排量q作为主要参数,这样有:=2πn=Q.mv/DM及MM=pDMMm液压马达总功率:ηM=2πMMn/pQ=mvMm可见,容积效率和机械效率是液压泵和马达的重要性能指标。因总功率为它们二者的乘积,故液压传动系统效率低下。总功率过低将使能耗增加并因此引起系统发热,因此提高泵和马达的效率有其重要意义。3、总功率按结构分:柱塞式、叶片式和齿轮式按排量分:定量和变量按调节方式分:手动式和自动式,自动式又分限压式、恒功率式、恒压式和恒流式等。按自吸能力分:自吸式合非自吸式四、液压泵和液压马达的类型液压泵和液压马达的图形符号定量泵变量泵定量马达变量马达双向变量泵双向变量马达图3-3液压泵和液压马达的图形符号结束§3-2齿轮泵和齿轮马达一、概述二、外啮合齿轮泵工作原理三、外啮合齿轮泵的几个问题四、内啮合齿轮泵五、齿轮马达齿轮泵是液压泵中结构最简单的一种泵,它的抗污染能力强,价格最便宜。但一般齿轮泵容积效率较低,轴承上不平衡力大,工作压力不高。齿轮泵的另一个重要缺点是流量脉动大,运行时噪声水平较高,在高压下运行时尤为突出。齿轮泵主要用于低压或噪声水平限制不严的场合。一般机械的润滑泵以及非自吸式泵的辅助泵都采用齿轮泵。从结构上看齿轮泵可分为外啮合和内啮合两类,其中以外啮合齿轮泵应用更广泛。一、概述二、外啮合齿轮泵工作原理外啮合齿轮泵由一对完全相同的齿轮啮合,由于1,产生上下体积变化,这就形成了吸油区和压油区。同时在啮合过程中啮合点沿啮合线移动,把这两区分开,起配流作用。吸油压油图为外啮合齿轮泵实物结构下面分析一下泵的排量。泵每转一周把两个齿轮上齿谷中的存油排出。如果泵中采用标准齿轮,并取齿谷的容积等于齿部的体积,则齿轮每转一周排出的体积可近似等于外径为(mZ+2m),内径为(mZ-2m),厚度为B的圆环体积,即q=/4[(mZ+2m)2-(mZ-2m)2]B=2m2ZB由于齿谷的体积大于齿部,实际几何排量还要大一些,故以3.33代替上式中的较接近实际情况。得q=6.66m2ZB即泵的实际流量为:Q=6.66m2ZBPV.n3、困油三、外啮合齿轮泵的几个问题1、泄漏2、径向力不平衡齿顶与泵体内表面的景象泄漏;两齿轮啮合线处的泄漏;齿轮端面与前、后端盖件的轴向间隙泄漏。其中轴向泄漏最为严重,高压泵常采用间隙自动补偿装置来减小泄漏。齿轮泵一侧压油,一侧吸油,导致径向力不平衡。齿轮在啮合时,前一对齿脱开啮合前,后一对齿进入啮合,在两对齿之间形成密封容积,当密封容积由大变小时,油液受挤压,压力增大,使泄漏增大,当密封容积由小变大时,产生气穴。称为困油现象。解决办法是开卸荷槽。使密封容积变小时卸荷槽与压油口通,密封容积变大时,卸荷槽与吸油口相通,以减小困油的不利影响。四、内啮合齿轮泵如图所示为摆线泵工作原理图。内转子1为齿轮,有6个齿。外转子2为内齿轮,有7个齿。内外转子的偏心距为e。当内转子绕中心01旋转时外转子绕02同时旋转,内外转子能自动形成几个独立的密封容积,摆线泵按图示方向旋转时,右半部分的封闭容积增大,形成局部真空,并通过配油窗口B从油箱吸油(b图)。当转子转到图c位置时,封闭容积为最大。在图d,油从A输出。图示为内啮合齿轮泵结构图。摆线泵由于采用摆线,又是内啮合,因此与同排量的其它液压泵比较,结构更为简单,紧凑。泵的轴向配油,配油窗口很大,吸排油很充分。内啮合的一对转子同向旋转,并且只相差一个齿,两转子齿部处的相对滑动速度很小,所以运动平稳,噪声小寿命长。摆线泵的缺点是转子齿数少,流量脉动大,在高压低速的情况下,容积效率较低。图中为内啮合齿轮泵实物结构五、齿轮马达1、齿轮马达的工作原理图为外啮合齿轮马达的工作原理图。图中P点为两齿轮的啮合点,当压力油进入齿轮马达时,压力油分别作用在两个齿面上。由图可知,在两个齿轮上各有一个使其产生转矩的作用力,两齿轮便按图示方向旋转,齿轮马达输出轴上也就输出旋转力矩。齿轮马达和齿轮泵在结构上的主要区别如下:(1)齿轮泵一般只需一个方向旋转,为了减小径向不平衡液压力,因此吸油口大,排油口小。而齿轮马达则需正、反两个方向旋转,因此进油口大小相等。(2)齿轮马达的内泄漏不能像齿轮泵那样直接引到低压腔去,而必须单独的泄漏通道引到壳体外去。因为马达低压腔有一定背压,如果泄漏油直接引到低压腔,所有与泄漏通道相连接的部分都按回油压力承受油压力,这可能使轴端密封失效。2、结构特点(3)为了减少马达的启动摩擦扭矩,并降低最低稳定转速,一般采用滚针轴承和其他改善轴承润滑冷却条件等措施。齿轮马达具有体积小,重量轻,结构简单,工艺性好,对污染不敏感,耐冲击,惯性小等优点。因此,在矿山、工程机械及农业机械上广泛使用。但由于压力油作用在液压马达齿轮上的作用面积小,所以输出转矩较小,一般都用于高转速低转矩的情况下。结束§3-3叶片泵和叶片式马达一、双作用叶片泵叶片泵有两类:双作用和单作用叶片泵,双作用叶片泵是定量泵,单作用泵往往做成变量泵。而马达只有双作用式。二、双作用叶片式液压马达三、单作用叶片泵1、结构和工作原理一、双作用叶片泵图中为双作用叶片泵结构。它主要由壳体1、7,转子3,定子4,叶片5,配流盘2、6和主轴9等组成。1-前泵体2-配流盘-转子4-定子5-叶片6-配流盘7后泵体8-端盖9-主轴10-密封防尘圈11、12-轴承13-螺钉图中为泵的转子和定子实物图3-13双作用叶片工作原理压油吸油双作用叶片泵工作原理可由下图说明。当转子3和叶片5一起按图示方向旋转时,由于离心力的作用,叶片紧贴在定子4的内表面,把定子内表面、转子外表面和两个配流盘形成的空间分割成八块密封容积。随着转子的旋转,每一块密封容积会周期性地变大和缩小。一转内密封容积变化两个循环。所以密封容积每转内吸油、压油两次,称为双作用泵。双作用使流量增加一倍,流量也相应增加。2.流量先计算处于大半径r1处的叶片a在旋转时排出流量Qa。微小面积dA以速度v运动时排出的流量为dQ。则Qa=dQ=r0r1Brdr=(B/2).(r12-r02)式中B—叶片宽度;—转子的角速度;r0—转子的外半径。同样,处于小半径r2处叶片b在旋转时吸入的流量为:Qb=r0r2Brdr=(B/2).(r22-r02)从配流窗口II排出的流量为:QII=Qa-Qb=(B/2).(r12-r22)由于此时配流窗口IV也有油液排除,故泵的总流量为:QT=2QII=B(r12-r22)=2Bn(r12-r22)3、结构上的若干特点(1)保持叶片与定子内表面接触转子旋转时保证叶片与定子内表面接触时泵正常工作的必要条件。前文已指出叶片靠旋转时离心甩出,但在压油区叶片顶部有压力油作用,只靠离心力不能保证叶片与定子可靠接触。为此,将压力油也通至叶片底部。但这样做在吸油区时叶片对定子的压力又嫌过大,使定子吸油区过渡曲线部位磨损严重。减少叶片厚度可减少叶片底部的作用力,但受到叶片强度的限制,叶片不能过薄。这往往成为提高叶片泵工作压力的障碍。在高压叶片泵中采用各种结构来减小叶片对定子的作用力。(2)端面间隙为了使转子和叶片能自由旋转,它们与配油盘二端面间应保持一定间隙。但间隙也不能过大,过大时将使泵的内泄漏增加,泵容积效率降低。一般中、小规格的泵其端面间隙为0.02~0.04mm。(3)定子曲线这里指的是连接四段圆弧的过渡曲线。较早期的泵采用阿基米德螺线。即=r2+a及=r1-a采用阿基米德螺线时,叶片径向速度不变,不会引起泵流量脉动。(4)叶片倾角从前图中可看出叶片顶部顺转子旋转方向转过一角度。很明显,叶片顶部与定子曲线间是滑动摩擦。在压油区,叶片依靠定子内表面迫使叶片沿叶片槽向里运动,其作用与凸轮相似,叶片与定子内表面接触时有一定压力角。4、类型前图所示叶片泵额定压力6.3MPa,转速有1000~1500r/min,流量有6~100r/min多种规格,容积效率90%左右,主要用于机床。二、双作用叶片式液压马达图3-15叶片式液压马达工作原理1、工作原理双作用叶片式液压马达的工作原理可用下图说明。图中当压力油进入后,叶片1、3、5、7一侧受到压力油的作用,另一侧通回油。而叶片2、4、6、8的两侧压力相同。当压力作用在叶片上时,产生的扭矩为dM=r.pdA=pBrdr根据右图,作用在轴上的总理论扭矩Mt为:MT=2r2r1pBrdr=pB(r12-r22)(1)叶片底部有弹簧,保证在初始条件下叶片贴近内表面,形成密封容积;(2)泵壳内含有两个单向阀。进、回油腔的压力经单向阀选择