第二章电流保护和方向性电流保护.

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章电流保护和方向性电流保护§2-1单侧电源网络反映相间短路的电流保护一、过电流继电器1、基本符号及特性参数动作过程:IJ↑→Mdc↑→Mdc≈Mth+Mm→舌片开始动作┌Mdc↑↑┐动作过程中:δ↓→││→舌片加速动作(Mdc=K·(IJ/δ)2)└Mth↑┘动作终止时出现剩余力矩:ΔM=Mdc-Mth(有利于接点可靠闭合)动作电流Idz.J:能使继电器刚好动作的最小电流值。返回过程:IJ↓≈Idz.J时,由于剩余力矩ΔM的存在,暂时还不能返回;IJ↓↓→Mdc↓→Mdc≈Mth-Mm→舌片开始返回┌Mdc↓↓┐返回过程中:δ↑→││→舌片加速返回└Mth↓┘返回终止时出现剩余力矩:ΔM’=Mth-Mdc(有利于接点可靠断开)返回电流Ih.J:能使继电器刚好返回的最大电流值。过电流继电器表示符号:继电器的返回系数:继电特性:无论起动或返回,继电器J的动作都是明确干脆的,不会停留在某个中间位置,这种特性称为“继电特性”。过量继电器(保护):反映电气量上升而使保护动作的继电器(保护),Kh1低量继电器(保护):反映电气量下降而使保护动作的继电器(保护),Kh12、集成电路型过电流继电器(晶体管型:略)JdzJhhIIK..动作量返回量3ms延时:防止干扰信号引起的误动(干扰持续时间一般1ms)12ms展宽:使输出动作信号展成连续高电平。二、电流速断保护(电流I段)电流速断保护:瞬时动作的电流保护。1、整定计算原则(1)短路特性分析:三相短路时d(3),流过保护安装处的短路电流:dsdZZEZEIZd()↑→Id↓曲线max:系统最大运行方式下发生三相短路情况。曲线min:系统最小运行方式下发生两相短路情况。(线路上某点两相短路电流为该点三相短路电流的倍)32(2)动作电流整定原则:按躲开下条线路出口(始端)短路时流过本保护的最大短路电流整定(以保证选择性):IIdz.1I(3)d.B.maxIIdz.2I(3)d.c.max取:IIdz.1=KkI·I(3)d.B.maxIIdz.2=KkI·I(3)d.C.max(可靠系数:KkI=1.2~1.3)(3)灵敏性校验该保护不能保护本线路全长,故用保护范围来衡量:max:最大保护范围.min:最小保护范围.校验保护范围:(min/L)·100%15%~20%LzZEKlzZEsxxIksxx1min.min1max.3/3/23由:1max.1min.min/)23(zZKLzZlsIks可求得:2、电流速断保护的评价优点:动作迅速(主要优点),简单可靠。缺点:不能保护本线路全长(主要缺点),直接受系统运行方式的影响,受线路长度的影响。三、限时电流速断保护(电流II段)限时电流速断保护:以较小的动作时限切除本线路全线范围内的故障1、动作电流的整定:与下条线路的电流I段配合。即:保护范围延伸到下条线路,但不超出下条线路电流I段保护范围的末端。即:躲开下条线路电流I段保护范围末端短路时(即流过下条线路的短路电流刚好为其电流I段整定值时),流过本保护的最大短路电流。IIIdz.1=KkII·IIdz.2=KkII·KkI·I(3)d.C.max可靠系数:KkII=1.1~1.2(Id中非周期分量已衰减,故比KkI稍小)2、动作时限的配合为保证本线路电流II段与下条线路电流I段的保护范围重叠区内短路时的动作选择性,动作时限按下式配合:tII1=tI2+t≈t(t:0.35s~0.6s,一般取0.5s)3、保护装置灵敏性的校验对于过量保护,灵敏系数:(电流保护的故障参数计算值:系统最小运行方式下被保护线路末端发生两相短路时,流过本保护的最小短路电流)保护装置的动作参数计算值属性短路时的故障参数应保护的范围内发生金lmK对保护1的电流II段:Klm=要求:Klm1.3~1.5若Klm不满足要求,可继续延伸保护范围使得:IIIdz.1=KkII·IIIdz.2(与下条线路的电流II段保护配合)同时进一步提高时限:tII1=tII2+t≈2t(保证重叠区内故障的动作选择性)四、定时限过流保护(电流III段,主要作为后备保护,对灵敏性要求高)1、动作电流的整定原则按躲开流过保护的最大负荷电流来整定:IIIIdzIfh.max1..min..)2(dzIIBdII实际整定原则:考虑到外部故障切除后,电压恢复时电动机的自启动过程中,保护要能可靠地返回,则要求:IIIIhIzq.max=Kzq·Ifh.max(电动机负荷自启动系数Kzq1)又:IIIIh=Kh·IIIIdz(继电器返回系数Kh1)hfhzqIIIdzKIKImax.则:max.fhhzqIIIkIIIdzIKKKI取:(可靠系数KkIII取:1.15~1.25)2、按选择性要求确定过流保护动作时限为保证动作选择性,动作时限按“阶梯原则”整定:tIII1=Max{tIII2,tIII3,tIII4}+t对定时限过流保护,当故障越靠近电源端时,此时短路电流Id越大,但过流保护的动作时限反而越长———缺点∴定时限过流保护一般作为后备保护,但在电网的终端可以作为主保护。3、定时限过流保护灵敏系数的校验(1)作为本线路主保护或近后备时,按本线路末端短路流过本保护的最小短路电流来校验:要求Klm1.3~1.5dzIIIbmdlmIIKmin..)2((2)作为远后备时(相邻线路的后备),按相邻线路末端短路流过本保护的最小短路电流来校验:要求Klm1.2(3)要求各保护之间Klm互相配合对同一故障点,越靠近故障点的保护,其Klm要求越大Klm.1Klm.2Klm.3Klm.4…即要求:IIIIdz.1IIIIdz.2IIIIdz.3…(单侧电源辐射网,此条件自然满足)dzIIIxmdlmIIKmin..)2(五、阶段式电流保护的应用及评价(1)电流I段:由动作电流的整定来保证动作选择性,按躲开某点的短路电流整定,动作迅速(无时限),但不能保护本线路全长,作为主保护的一部分。(2)电流II段:由动作电流整定与时限配合来保证动作选择性,动作电流按躲开某点的短路电流整定,能保护本线路全长,动作时限较小,作为主保护的另一部分(电流I段的补充)(3)电流III段:由动作时限的配合来保证动作的选择性,动作电流按躲开负荷电流整定,其值较小,灵敏度较高,然而动作时限较长,且越靠近电源短路,动作时限反而越长,一般作为后备保护,但是在电网终端可作为主保护。六、电流保护的接线方式LJ—(接线)—TA1、两种常用的接线方式(1)三相星形(2)两相星形各相LJ出口采用“或”逻辑。继电器动作电流Idz.J=Idz/nTA2、两种接线方式的性能分析比较(1)对中性点接地或不接地网中各种相间短路两种接线方式均能正确反映这些故障.(2)对中性点非直接接地网中的异地两点接地短路(不同线路上两点接地)∵这种电网允许带一个接地点继续运行,只需任切除一接地点并联线路上两点接地时,只需切除后一接地点串联线路上两点接地时则:①串联线路上两点接地时:三相星形接线能保证只切除后一接地点两相星形接线只能保证2/3的机会切除后一接地点②并联线路上两点接地时:三相星形接线:若保护1,2时限相同,则两接地点将同时被切除,扩大了停电范围。两相星形接线:即使保护1,2时限相同(例如皆由I段动作,或皆由II段动作),也能保证有2/3的机会只切除任一条线路。(3)作为Y/接线变压器后面短路的远后备保护的接线方式Y/-11接线T:正序:侧超前Y侧30°负序:侧落后Y侧30°现以Y/-11接线的降压变压器为例:假设低压侧(侧)发生AB两相短路:0;CBAIIIYCYAYBIII22则:CABlmBIIIKI和,只能反映两相星形:不能反映较大,灵敏系数三相星形:能反映∴两相星形的Klm比三相星形降低一半提高两相星形接线Klm的方法:在两相星形的中线上再接一个继电器3LJ.∵两相短路时有:0CBAIII∴3LJ中的电流:∴I3LJ反映了IBKlm↑TABTACALJnInIII/|/)(|33、两种接线方式的应用(1)三相星形:接线复杂,不经济,但可提高保护动作的可靠性与灵敏性,广泛用于发电机、变压器等大型贵重元件以及110kV以上高压线路的保护中。(2)两相星形:接线简单、经济,广泛用于各种电网中反映相间短路的110kV以下中、低压线路的电流保护中。(电网中所有采用两相星形接线的保护都应装在相同的两相上,一般为A、C相)七、三段式电流保护接线图1、原理图以二次元件为整体绘制。2、展开图以二次回路为整体绘制。交流回路直流回路§2-2电网相间短路的方向性电流保护一、方向性问题的提出(以双侧电源电网为例)E1单独供电:由保护1、3、5起线路保护作用E2单独供电:由保护6、4、2起线路保护作用E1、E2同时供电:(以B母线两侧保护2,3为例)假设:┌电流I段保护:IIdz.3IIdz.2└电流III段保护:tIII3tIII2d1点短路时(要求:2动作,3不动),虽然此时可能满足选择性(3不误动);但若出现d2点短路,则:2误动→非选择性动作。规定保护正方向:保护安装处母线→被保护线路分析可知:被保护线路正方向短路时:保护不会出现误动;反方向短路时:由对侧电源供给的短路电流可能造成该保护误动作,此时的功率方向:线路→母线为防止保护误动,增设功率方向闭锁元件GJ(装于误动保护上)┌正方向(母线→线路):GJ动作启动保护短路点位于│└反方向(线路→母线):GJ不动闭锁保护增设GJ后,双侧电源网可以按单侧电源网的三段电流保护进行配合。二、GJ的工作原理保护1上装设GJ假设GJ接线方式为:加入GJ的电压:——相电压(以相应相母线高于中性点N为正极性)电流——相电流(以母线流向线路为正极性)。则:d1点三相短路时:d2点三相短路时:设计一个直线动作边界:当正方向短路时位于动作区,GJ动作当反方向短路时位于非动作区,GJ闭锁(注:若GJ的接线方式或短路类型变化,则正向短路时与的相位差将变化,因此GJ的动作边界应可调整)xJUUxJII正方向)超前即(::1dJJdJJIUZIU反方向)超前即:()180(:dJJIUJUJI2)(dJJZIU1、相位比较式GJ相位比较器:两输入量:动作条件:(锐角型)或(钝角型)相位比较式GJ:两输入量:(其中——GJ的内角)动作条件:DC、90arg90DC90arg270DCJJIU、iuKKarg90arg90JiJuIKUK90arg90JJIU即:其功率表示形式为:调→调GJ的动作边界当超前的角度:时:垂直于动作边界,位于动作范围的正中央,GJ动作最为灵敏可靠,此时的称为GJ的最灵敏角,可见2、幅值比较式GJ幅值比较器:两输入量:动作条件:0)cos(JJJIUJUJIJJIJlmlmBA、||||BA幅值比较器与锐角型相位比较器的关系(互换条件):若取:则:①当相位比较器位于动作区,即:即幅值比较器也位于动作区②当相位比较器位于非动作区,即:即幅值比较器也位于非动作区∴当满足:时(为任意相量),幅值比较器与锐角型相位比较器具有相同的动作特性。(幅值比较器与钝角型相位比较器的互换关系为:)KDCBKDCA)(;)(||||90arg90BADC有:时,||||90arg90BADC有:时,KDCBKDCA)(;)(KDCBKDCA)(;)(K幅值比较式GJ:两输入量:则两比较量:其特性与相位比较式GJ完全相同。三、集成电路型GJ1、相位比较式原理分析:相位比较→时间比较当时:的持续时间5

1 / 42
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功