线代习题答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

线性代数习题及答案习题一(A类)1.求下列各排列的逆序数.(1)341782659;(2)987654321;(3)n(n1)…321;(4)13…(2n1)(2n)(2n2)…2.【解】(1)τ(341782659)=11;(2)τ(987654321)=36;(3)τ(n(n1)…3·2·1)=0+1+2+…+(n1)=(1)2nn;(4)τ(13…(2n1)(2n)(2n2)…2)=0+1+…+(n1)+(n1)+(n2)+…+1+0=n(n1).2.求出j,k使9级排列24j157k98为偶排列。解:由排列为9级排列,所以j,k只能为3、6.由2排首位,逆序为0,4的逆序数为0,1的逆序数为3,7的逆序数为0,9的为0,8的为1.由0+0+3+0+1=4,为偶数.若j=3,k=6,则j的逆序为1,5的逆序数为0,k的为1,符合题意;若j=6,k=3,则j的逆序为0,5的逆序数为1,k的为4,不符合题意.所以j=3、k=6.3.写出4阶行列式中含有因子2234aa的项。解:D4=1234()11223344(1)jjjjjjjjaaaa由题意有:232,4.jj故1234141243243241jjjjjjD4中含的2234aa项为:(1243)(3241)1122344313223441(1)(1)aaaaaaaa即为:1122344313223441aaaaaaaa4.在6阶行列式中,下列各项应带什么符号?(1)233142561465aaaaaa;解:233142561465142331425665aaaaaaaaaaaa因为(431265)6,(431265)6(1)(1)1所以该项带正号。(2)324314516625aaaaaa解:324314516625142532435166aaaaaaaaaaaa因为(452316)8,(452316)8(1)(1)1所以该项带正号。5.用定义计算下列各行列式.(1)0200001030000004;(2)1230002030450001.(3)010000200001000nn【解】(1)D=(1)τ(2314)4!=24;(2)D=12.(3)由题意知:12231,,11210nnnijaaanana其余所以12()112233(2341)1223341,111(1)(1)(1)123(1)(231)1(1)!njjjnjjjnjnnnnnnnDaaaaaaaaannnnn6.计算下列各行列式.(1)2141312112325062;(2)abacaebdcddebfcfef;(3)100110011001abcd;(4)1234234134124123.【解】(1)1250623121012325062rrD;(2)1114111111Dabcdefabcdef;210110111(3)(1)111011001011;bcDaabcdccddddabcdabadcd321221133142144121023410234102341034101130113(4)160.10412022200441012301110004rrccrrccrrrrccrrD7.证明下列各式.(1)22322()111aabbaabbab;(2)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)aaaabbbbccccdddd;(3)232232232111()111aaaabbabbccabbcccc(4)20000()0000nnababDadbccdcd;(5)121111111111111nniiiinaaaaa.【证明】(1)1323223()()()2()2001()()()()()2()21ccccababbabbababbababbababbabababab左端右端.(2)32213142412222-2-2232221446921262144692126021446921262144692126ccccccccccaaaaaabbbbbbccccccdddddd左端右端.(3)首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11xxxaaafxxaxbxcabacbcbbbccc从上面的4阶范德蒙行列式知,多项式f(x)的x的系数为2221()()()()(),11aaabbcacabacbcabbcacbbcc但对(*)式右端行列式按第一行展开知x的系数为两者应相等,故231123231(1),11aabbcc(4)对D2n按第一行展开,得22(1)2(1)2(1)00000000(),nnnnababababDabcdcdcdcddcadDbcDadbcD据此递推下去,可得222(1)2(2)112()()()()()()nnnnnnDadbcDadbcDadbcDadbcadbcadbc2().nnDadbc(5)对行列式的阶数n用数学归纳法.当n=2时,可直接验算结论成立,假定对这样的n1阶行列式结论成立,进而证明阶数为n时结论也成立.按Dn的最后一列,把Dn拆成两个n阶行列式相加:112211211111011111110111111101111111.nnnnnnaaaaDaaaaaaD但由归纳假设11121111,nnniiDaaaa从而有11211211121111111111.nnnnniinnnnniiiiiiDaaaaaaaaaaaaaaa8.计算下列n阶行列式.(1)111111nxxDx(2)122222222232222nDn;(3)000000000000nxyxyDxyyx.(4)2100012100012000002100012nD.【解】(1)各行都加到第一行,再从第一行提出x+(n1),得11111[(1)],11nxDxnx将第一行乘(1)后分别加到其余各行,得1111110[(1)](1)(1).001nnxDxnxnxx(2)213111222210000101001002010002nrrnrrrrDn按第二行展开222201002(2)!.00200002nn(3)行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)000000000000(1)(1).nnnnnnnnxyyxyxyDxyxyxyyxxyxxyyxy(4)210002000001000121001210012100012000120001200000210002100021000120001200012nD122nnDD.即有112211nnnnDDDDDD由112211nnnnDDDDDDn得11,121nnDDnDnn.9.计算n阶行列式.121212111nnnnaaaaaaDaaa【解】各列都加到第一列,再从第一列提出11niia,得232323123111111,11nnnnininaaaaaaDaaaaaaa将第一行乘(1)后加到其余各行,得23111010011.00100001nnnniiiiaaaDaa10.计算n阶行列式(其中0,1,2,,iain).1111123222211223322221122331111123nnnnnnnnnnnnnnnnnnnnnnnaaaaababababDababababbbbb.【解】行列式的各列提取因子1(1,2,,)njajn,然后应用范德蒙行列式.3121232222312112123111131212311211111()().nnnnnnnnnnnnnjinnjinijbbbbaaaabbbbDaaaaaaabbbbaaaabbaaaaa11.已知4阶行列式D中第3列元素依次为-1,2,0,1,它们的余子式依次为8,7,2,10,求行列式D的值。解:D=1112142122243132344142441201aaaaaaaaaaaa,132333438,7,2,10MMMM433311323334313132323333343434567(1)(1)(1)(1)(1)(1)(1)8(1)27(1)02(1)1108141032.iiiiDaMaMaMaMaM12.用克拉默法则解方程组.(1)1212450,372.xxxx(2)12312132,21,4.xxxxxxx(3)123123412342345,21,22,233.xxxxxxxxxxxxxx(4)1212323434545561,560,560,560,51.xxxxxxxxxxxxx【解】(1)因为1212450372xxxxD=454337;D1=051027;D2=40832所以1212108,.4343DDxxDD(2)因为12312132214xxxxxxxD=[1(1)]2,31111111200315101012riiD1=211001121201201361401611D2=12112111110011422141022D3=1121121210317104012所以3121231347,,.555DDDxxxDDD(3)方程组的系数行列式为1110111013113121110131180;1210521211012112301401230123D1234511015101111211118;36;2211121131230323115011152111211136;18.1221121201330123DDDD故原方程组有惟一解,为312412341,2,2,1.DDDDxxxxDDDD1234512345(4)665,1507,1145,703,395,212.15072293779212,,,,.66513335133665DDDDDDxxxxx13.满足什么条件时,线性方程组12312312321,2,4553xxxxxxxxx有唯一解?解:D=[32(1)]21211110455450c=1(1)(1)(54)45要

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功