线性代数模拟试题内蒙古工业大学

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《线性代数》试卷第1页共6页内蒙古工业大学2007——2008学年第二学期《线性代数》期末考试试卷(A)(课程代码:090312033)试卷审核人:斯日古楞考试时间:2008.5.注意事项:1.本试卷适用于07级本科生使用。2.本试卷共6页,满分100分。答题时间90分钟。班级:姓名:学号:题号一二三四五六总分评分一、填空题(具体要求。本大题共5道小题,每小题3分,共15分)1.设A为3阶方阵,数=2,|A|=3,则|A|=。2.设1121112301100010011ABAB则且,,.3.三个未知量的齐次线性方程组0321xxx的一个基础解系是。4.设三阶方阵122212,(,1,1)304TAb三维向量,已知A与线性相关,则b=_____________。5.二次型23322221213219622),,(xxxxxxxxxxf的矩得分评卷人《线性代数》试卷第2页共6页阵表达式为________________________________。二、选择题(具体要求。本大题共5道小题,每小题3分,共15分)1.设BA,都是n阶方阵,且OA,而OAB,则()。(A)OB;(B)00BA或(C)OBA(D)222BABA)(2.设A为n阶方阵,则0A的充分必要条件是()(A)两行(列)元素对应成比例(B)必有一行为其余行的线性组合(C)A中有一行元素全为0(D)任一行为其余行的线性组合3.设A为mn矩阵,B为nm矩阵,且mn。则下列正确的是()(A)秩mABR)(;(B)秩nABR)(;(C)秩)(),(min)(BRARABR;(D)0AB4.设方程组bAX有无穷多组解,则0AX()(A)必有唯一解;(B)必定没有解;(C)必有无穷多组解;(D)A,B,C都不正确.5.若xA20100002与2-00010002B相似,则x=()(A)-1(B)0(C)1(D)2得分评卷人《线性代数》试卷第3页共6页三、计算题(具体要求。本大题共3道小题,第1、2小题9分,第3小题7分,共25分)1.已知四阶矩阵A的逆矩阵785271391698347611A,求A2。设矩阵101020101A,矩阵X满足XAEAX2,求矩阵X。得分评卷人《线性代数》试卷第4页共6页3.设三阶方阵A的特征值为101321,,,对应的特征向量依次为,),,(,),,(,),,(TTTxxx212122221321求矩阵A。四、解答题(具体要求。本大题共2道小题,每小题12分,共24分)1.四维向量组T)5,3,1,2(1,T)3,1,3,4(2T)4,3,2,3(3,T)17,15,1,4(4T)0,7,6,7(5是否线性相关?求出其一个最大无关组.得分评卷人《线性代数》试卷第5页共6页2.设矩阵2135212baA的一个特征向量为T111,,,求数ba,及A的全体特征值与特征向量。五、解答题(具体要求。本大题共1道小题,共12分)对参数讨论方程组3213213211xxxxxxxxx何时无解?何时有解?在有无穷多解的情况下求其通解。得分评卷人《线性代数》试卷第6页共6页六、证明题(具体要求。本大题共1道小题,共9分)设321,,为3维向量空间V的一组标准正交基,),(),(),(321332123211223122312231证明:321,,也是V的一组标准正交基。得分评卷人

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功