第一章练习题1:设1x,2x,3x是方程3x+0qpx的三个根,计算行列式132213321xxxxxxxxx解:由于1x,2x,3x是方程3x+0qpx的三个根,从而))()((3213xxxxxxqpxx32132312123213)()(xxxxxxxxxxxxxxx可见0321xxx,故133212132132321132213321xxxxxxxxxxxxxxxxxxxxxxxx0000132132xxxxxx2:计算3211214114314321103214214314324321D1601110222031104321103:计算xxxxD43214321432143214(第一列乘(-4)加到第四列,依次类推)xxxxxxxD0010010014321(按最后一行展开)0000432xxxxxxxxxxx01013213)10(xx4:计算4321axxxxaxxxxaxxxxaD(第三行乘(-1)加到第四行,第二行乘(-1)加到第三行,依次类推)xaaxxaaxxaaxxxxa4332211000000(按第一列展开)xaaxxaaxxaa4332210000xaaxxaaxxxxax4332100)())(())(())(()())()((42433214321axaxaxaxaxaxaxxxaxaxaa5:用行列式定义计算0000000000535243423534333231252423222113125aaaaaaaaaaaaaaaaD6:,4cdbaacbdadbcdcbaD设四阶行列式44342414AAAA则01111dbacbddbccba7.nnDn00103010021321求第一行各元素的代数余子式之和.11211nAAA解:nAAA11211n001030100211111(最后一行乘(n1)加到第一行,依次类推,第二行乘(21)加到第一行)nnn0010301002100021311111nkkn2)11(!8.例1:设f(x)=c0+c1x+c2x2+…+cnxn,用克莱姆法则证明f(x)若有n+1个不同的根,则f(x)是零多项式.证:设)1,,2,1(niai是)(xf的1n个不同的根,即)(jiaaji,则由)1,,2,1(0)(niafi,得000121211022222101212110nnnnnnnnnacacaccacacaccacacacc该方程组的系数行列式是范德蒙行列式的转置,即nnnnnnaaaaaaaaaD1212112222111110)(11jijinaa由Cramer法则知,上述方程组只有唯一零解,即010nccc,故0)(xf证明:EAAAAA**证:设)(ijaA,记)(*ijbAA,则ijjninjijiijAAaAaAab2211故nnnnnnaaaaaaaaaAA212222111211*nnnnnnAAAAAAAAA212221212111EAAAA000000