统计初步与概率初步从直观上来看,初中数学统计与概率知识点明显与代数息息相关,实则统计学也离不开几何,而在我们学习统计与概率的时候,已经深深理解,这是一块与现实生活,尤其是经济生活密不可分的知识。不多说,我们先来看看中考对于统计与概率知识点复习的要求。1.了解通过全面调查和抽样调查收集数据的方法.2.会设计简单的调查问卷收集数据;能根据问题查找有关资料,获得数据信息.3.掌握划记法,会用表格整理数据.4.认识条形图、折线网、扇形图,掌握它们各自的特点,会画扇形图,会用扇形图描述数据.5.结合实例进一步理解频数的概念,了解频数分布的意义和作用.6.能够根据需要对数据进行适当的分组;会列频数分布表,会画频数分布直方图和频数折线图.7.根据问题需要选择适当的统计图描述数据.8.平均数、中位数和众数等统计量的统计意义选择适当的统计量表示数据的集中趋势.9.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况;能用计算器的统计功能进行统讣计算,进一步体会计算器的优越性.10.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.11.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.12.条形图是使用宽度相同的条形的高度或长短来表示数据变动的统计图.条形图可以横置或纵置,纵置时也称柱形图.绘制时,如果将各类别(或组别)放狂横轴,则用条形的高度表示频数;如果将各类别(或组别)放在纵轴,则用条形的长短表示频数.13.扇形图也称圆形图或饼图,是用圆及圆内扇形的面积来表示数值大小的统计图.扇形图主要用于表示总体中各组成部分所占的比例,对于研究结构性问题很有用.14.折线图是在平I坷直角坐标系中用折线表现数量变化特征和规律的统计图,主要用于显示时间序列数据,用于反映事物发展变化的规律和趋势.15.直方图是用长方形的长度和宽度来表示频数分布的统训'图.在平面直角坐标系中,横轴表示数据分组,纵轴表示频数,这样,各组与相应的频数就形成一些长方形,即直方图.16.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据就是这组数据的众数.平均数、中位数和众数都可以作为一组数据的代表,它们各有自己的特点,能够从不同的角度提供信息.在实际应用中,需要分析具体问题的情况,选择适当的量来代表数据.考点一、统计学中的几个基本概念1、全面调查:考察全体对象的调查方式叫做全面调查。2、抽样调查:抽样调查是,一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。3、分层调查:像这样将总体单位按其属性特征分成若干类型或不同层次后,再在每个类型或每一层次中随机抽取样本的方法,称为分层抽样调查4、总体所有考察对象的全体叫做总体。5、个体总体中每一个考察对象叫做个体。6、样本从总体中所抽取的一部分个体叫做总体的一个样本。7、样本容量样本中个体的数目叫做样本容量。8、样本平均数样本中所有个体的平均数叫做样本平均数。9、总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。考点五、频率分布1、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。2、频数分布直方图2、研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤是:①计算极差(最大值与最小值的差)②决定组距与组数③决定分点④列频率分布表⑤画频率分布直方图(2)频率分布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。④组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。(3)列频数分布表的注意事项运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数。画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分5~12组。(4)直方图的特点通过长方形的高代表对应组的频数与组距的比(因为比是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图。它能:①清楚显示各组频数分布情况;②易于显示各组之间频数的差别。一、填空题1.某部门要了解一批药品的质量情况,应该采用的调查方式是_______调查.2.学校要了解初一年级学生吃早饭的情况,调查了一个班45名同学吃早饭的情况,在做这次统计调查中,样本是____________.3.某班女生人数与男生人数之比是7∶5,把男女学生人数分布情况制成扇形统计图,则表示女生人数的扇形圆心角的度数是__________°.4.已知数据总数是30,在样本频数分布直方图(如下图)中,各小长方形的高之比为AE∶BF∶CG∶DH=2∶4∶3∶1,第二小组的频数为_________.5.某图书室藏书15000册,各类书所占比例如图所示:(1)请你根据图示完成表格:类别文艺类科技类教辅类其他册数(2)______类书收藏量最大,它比科技类多______册.6.某校为了举办“庆祝新中国成立60周年”的活动,调查了本校所有学生,调查的结果如图所示,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有______人.二、选择题7.调查下面的问题,应该进行全面调查的是().(A)市场上某种食品的色素是否符合国家标准(B)一个村子所有家庭的收入(C)一个城市的空气质量(D)某品牌电视机显像管的寿命8.想了解北京市初二学生的视力状况,想抽出2000名学生进行测试,应该().(A)从不戴眼镜的同学中抽取样本(B)抽取某个学校的初二学生(C)中午的时候,测试一些从事体育运动的初二学生(D)到几所中学,在学校放学后,对出校门的初二学生随机测试9.为了了解某市2007年中考6万余名考生的考试情况,从中抽取500名考生的成绩进行质量分析.在这个问题中,下列说法中正确的个数是().①500名考生是一个个体;②500名考生是样本容量;③6万余名考生的成绩是总体(A)3个(B)2个(C)1个(D)无10.如图是广州市某一天内的气温变化图,下列说法中错误..的是().(A)最高气温是24℃(B)最高气温与最低气温的差为16℃(C)2时至14时之间的气温在逐渐升高(D)只有14时至24时之间的气温在逐渐降低三、解答题11.某商场儿童玩具专柜“六·一”儿童节这天的营业额为3万元,商场就按这一天为样本算出儿童专柜每月应完成营业额90万元,你认为这样的估计合理吗?为什么?12.在“首届中国西部(银川)房·车生活文化节”期间,某经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其他型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.图1图2(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?13.某中学为了解毕业年级800名学生每学期参加社会实践活动的时间,随机对该年级60名学生每学期参加社会实践活动的时间(单位:天)进行了统计(统计数据取整数),整理后分成5组,绘制成频数分布表和频数分布直方图(部分)如图.(1)补全频数分布表和频数分布直方图;时间(天)频数3.5≤x5.565.5≤x7.5117.5≤x9.59.5≤x11.511.5≤x13.57合计60(2)请你估算这所学校该年级的学生中,每学期参加社会实践活动的时间大于7天的约有多少人?14.2008年国际金融危机使我国的电子产品出口受到严重影响,在这种情况下有两个电子仪器厂仍然保持着良好的增长势头.(1)下面的两幅统计图,反映了一厂、二厂各类人员数量及工业产值情况,根据统计图填空.①一厂、二厂的技术员占厂内总人数的百分比分别是_______和_______;(结果精确到1%)②一厂、二厂2008年的产值比2007年的产值分别增长了_______万元和_______万元.(2)下面是一厂、二厂在2008年的销售产品数量占当年产品总数量的百分率统计表,根据此表,画出表示一厂销售情况的扇形统计图.国内销售国外销售本地外地一厂(%)203050二厂(%)502030(3)从以上情况分析,你认为哪个厂生产经营得好?为什么?考点二、平均数1、平均数的概念(1)平均数:一般地,如果有n个数,,,,21nxxx那么,)(121nxxxnx叫做这n个数的平均数,x读作“x拔”。(2)加权平均数:如果n个数中,1x出现1f次,2x出现2f次,…,kx出现kf次(这里nfffk21),那么,根据平均数的定义,这n个数的平均数可以表示为nfxfxfxxkk2211,这样求得的平均数x叫做加权平均数,其中kfff,,,21叫做权。2、平均数的计算方法(1)定义法当所给数据,,,,21nxxx比较分散时,一般选用定义公式:)(121nxxxnx(2)加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nfxfxfxxkk2211,其中nfffk21。考点三、众数、中位数1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数。2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。考点四、方差1、方差的概念在一组数据,,,,21nxxx中,各数据与它们的平均数x的差的平方的平均数,叫做这组数据的方差。通常用“2s”表示,即])()()[(1222212xxxxxxnsn2、方差的计算(1)基本公式:])()()[(1222212xxxxxxnsn此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。3、标准差方差的算数平方根叫做这组数据的标准差,用“s”表示,即])()()[(1222212xxxxxxnssn考点六、确定事件和随机事件1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。考点七、随机事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。考点八、概率的意义与表示方法1、概率的意义一般地,在大量重复试验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。2、事件和概率的表示方法一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P考点九、确定事件和随机事件的概率之间的关系1、确定事件概率(1)当A是必然发生的事件时,P(A)=1(2)当A是不可能发生的事件时,P(A)=02、确定事件和随