神经网络算法—BP算法一、神经网络简介2神经网络的基本功能输入样本神经网络输出样本自动提取非线性映射规则非线性映射功能三、神经网络建模基础假设1图(a)表明,正如生物神经元有许多激励输入一祥,人工神经元也应该有许多的输入信号,图中每个输入的大小用确定数值xi表示,它们同时输入神经元j,神经元的单输出用oj表示。3三、神经网络建模基础假设2生物神经元具有不同的突触性质和突触强度,其对输入的影响是使有些输入在神经元产生脉冲输出过程中所起的作用比另外一些输入更为重要。图(b)中对神经元的每一个输入都有一个加权系数wij,称为权重值,其正负模拟了生物神经元中突触的兴奋和抑制,其大小则代表了突触的不同连接强度。4三、神经网络建模基础假设3作为ANN的基本处理单元,必须对全部输入信号进行整合,以确定各类输入的作用总效果,图(c)表示组合输人信号的“总和值”,相应于生物神经元的膜电位。神经元激活与否取决于某一阈值电平,即只有当其输入总和超过阈值时,神经元才被激活而发放脉冲,否则神经元不会产生输出信号。5三、神经网络建模基础假设4图(d)人工神经元的输出也同生物神经元一样仅有一个,如用oj表示神经元输出,则输出与输入之间的对应关系可用图(d)中的某种非线性函数来表示,这种函数一般都是非线性的。6三、神经网络建模基础7BP算法,误差反向传播(ErrorBackPropagation,BP)算法。BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。15数据归一化常见的归一化方法y=(x-MinValue)/(MaxValue-MinValue)y=log10(x)内部函数premnmx、postmnmx、tramnmx输入训练数据的乱序排法block方法抽取按数组标号自定义抽取交错索引抽取随机抽缺点1)易形成局部极小(属贪婪算法,局部最优)而得不到全局最优;2)训练次数多使得学习效率低下,收敛速度慢(需做大量运算);3)隐节点的选取缺乏理论支持;4)训练时学习新样本有遗忘旧样本趋势。谢谢大家!