第10章VOC污染控制.

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第10章挥发性有机物污染控制教学内容§1蒸汽压与蒸发§2VOCs污染预防§3燃烧法控制VOCs污染§4洗涤法控制VOCs污染§5冷凝法控制VOCs污染§6吸附法控制VOCs污染§7生物法控制VOCs污染§1蒸气压与蒸发一、蒸气压蒸气压是判断有机物是否属于挥发性有机物的主要依据温度越高,蒸气压越大一、蒸气压空气中VOCs的含量低,可视为理想气体,拉乌尔定律iiipyxPiy-气相中组分i的摩尔分数-液相中组分i的摩尔分数-纯组分i的蒸气压-总压ixipPiy-气相中组分i的摩尔分数-液相中组分i的摩尔分数-纯组分i的蒸气压-总压ixipP一、蒸气压气液平衡:克劳休斯-克拉佩龙(Clausius-Clapyron)方程lgBpAT-平衡蒸气压,mmHg-系统温度,K-经验常数pTAB、-平衡蒸气压,mmHg-系统温度,K-经验常数pTAB、lgBpAtC-温度,oC-经验常数,参见表10-2ABC、、t安托万(Antoine)方程lgBpAtC-温度,oC-经验常数,参见表10-2ABC、、t-温度,oC-经验常数,参见表10-2ABC、、t安托万(Antoine)方程二、挥发与溶解§2VOCs污染预防VOCs排放§2VOCs污染预防VOCs控制技术可分为两类防止泄漏为主的预防性措施(最佳选择)•替换原材料•改变运行条件•更换设备等末端治理为主的控制性措施VOCs控制技术一、VOCs替代二、工艺改革非挥发性溶剂工艺取代挥发性溶剂工艺,如流化床粉剂涂料和紫外平版印刷术石油及石化生产过程:回收利用放空气体三、泄漏损耗及控制充入、呼吸和排空损耗充入、呼吸和排空损耗充入、呼吸和排空导致的VOCs排放iimVm,giiiyMViiiiiiimxpMxpMPVPRTRT-组分i的排放量-排出空气-VOCs混合物中组分i的浓度imi-组分i的排放量-排出空气-VOCs混合物中组分i的浓度imi-组分i的摩尔质量-排出空气中VOCs的摩尔分率-混合气体的摩尔体积iMiym,gV-组分i的摩尔质量-排出空气中VOCs的摩尔分率-混合气体的摩尔体积iMiym,gV充入、呼吸和排空损耗呼吸损耗呼吸损耗-温度变化使容器产生“吸进和呼出”而导致的有机物损耗白天呼出,夜晚吸进可通过在容器出口附加的蒸气保护阀(真空压力阀)来控制汽油的转移和呼吸损耗汽油50余种碳氢化物和其他痕量物质,C8H17(113)汽油已挥发部分所占的百分比/%汽油的转移和呼吸损耗转移损耗控制方法浮顶罐,用于储存大量的高挥发性的液体。用于密封的浮顶盖浮在液面上,液面以上没有空隙。液体注入或流出时顶盖随之上下浮动,避免上面所讲述的呼吸损耗。但是这种密封方式(一般采用有弹性的橡胶薄盖,类似于汽车上的雨刷)并不是完美的,仍然会有密封损失。§3VOCs控制方法和工艺燃烧法吸收(洗涤)法冷凝法吸附法生物法燃烧法(Combustion)适用于可燃或高温分解的物质不能回收有用物质,但可回收热量燃烧反应,如817222662222222CH12.25O8CO8.5HOCH7.5O6CO3HOHS1.5OSOHOQQQ-燃烧时放出的热量Q-燃烧时放出的热量Q一、VOCs燃烧原理及动力学燃烧动力学单位时间VOCs减少量2VOCsVOCsOddnmcvkcctVOCsVOCsddncvkct氧气浓度远高于VOCs浓度(10-8)VOCsVOCsddncvkct氧气浓度远高于VOCs浓度VOCsVOCsddncvkct氧气浓度远高于VOCs浓度(10-8)exp()EkART多数化学反应,遵循阿累尼乌斯方程exp()EkART多数化学反应,遵循阿累尼乌斯方程VOCs燃烧原理及动力学VOCsA/s-1E/4.18kJ·mol-1k/s-1538oC649oC760oC丙烯醛丙烯腈丙醇3.30E+102.13E+121.75E+0635.952.121.46.992580.019462.99528102.370.9614.83841.4720.3452.07氯丙烷苯1-丁烯氯苯环己胺1,2-二氯乙烷乙烷乙醇乙基丙稀酸酯乙烯甲酸乙酯乙硫醇3.89E+077.43E+213.74E+141.34E+175.13E+124.82E+115.65E+145.37E+112.19E+121.37E+124.39E+115.20E+0529.195.958.276.647.645.663.648.146.050.844.714.70.560340.000110.077600.000310.764670.248510.004110.058690.880940.028040.3956258.863534.930.146.020.0926.847.510.482.1427.441.2511.18170.6427.2138.59183.058.41438.42109.1119.9335.97407.9924.64154.04404.29VOCs燃烧原理及动力学例:试计算燃烧温度分别为538、649和760oC时,去除废气中99.9%的苯所需的时间。解:假设燃烧反应为一级,即n=l,对式(10-8)积分,得当T=5380C时,由表10-8,得k=0.00011/s,代入式(10-9),得同理可求得T=649、7600C时所需的燃烧时间分别为49s、0.2s。00exp[()]CkttC(10-9)00exp[()]CkttC(10-9)0111lnln62800s17.4h0.000110.001CtkCVOCs燃烧原理及动力学燃烧与爆炸燃烧极限浓度范围=爆炸极限浓度范围多种可燃气体与空气混合,爆炸极限范围12100micabmccc-混合气体的爆炸极限-i组分的爆炸极限-各组分的百分含量mcic,,abm-混合气体的爆炸极限-i组分的爆炸极限-各组分的百分含量mcic,,abm二、燃烧工艺直接燃烧适用于可燃有害组分浓度较高或热值较高的废气设备:燃烧炉、窑、锅炉温度1100oC左右火炬燃烧:产生大量有害气体、烟尘和热辐射,应尽量避免二、燃烧工艺热力燃烧(ThermalCombustion)适于低浓度废气的净化(助燃废气、旁通废气)温度低,540~820oC必要条件:温度、停留时间、湍流混合二、燃烧工艺-热力燃烧热力燃烧炉:应获得760℃以上的温度和0.5S左右的接触时间。主体结构:燃烧器:辅助燃料燃烧生成高温燃气。燃烧室:使高温燃气与旁通废气混合达到温度和停留时间要求。配焰燃烧器系统:小火焰,废气包围进入。易熄火。离焰燃烧器系统:燃烧与混合分开进行。废气不与火焰接触,依靠高温燃气和废气的混合,不易熄火。离焰燃烧器系统优点:可用废气助燃,也可用外来空气助燃,可适用含氧量低于16%的废气。对燃料种类适用性强,可用气体,可用液体。可根据需要调节火焰大小。普通锅炉、生活用锅炉和一般加热炉可用作热力燃烧炉。注意:★废气中净化组分应当全部是可燃的。★所要净化的废气流量不能太大★废气中的含氧量与锅炉燃烧的需氧量相适应。二、燃烧工艺催化燃烧(CatalyticCombustion)(预热、换热、反应-分建和合建)二、燃烧工艺催化燃烧优点:•无火焰燃烧,安全性好•温度低:300~450oC,辅助燃料消耗少•对可燃组分浓度和热值限制少二、燃烧工艺较少采用需辅助燃料§4吸收(洗涤)法控制VOCS污染一、吸收工艺及吸收剂吸收塔汽提塔一、吸收工艺及吸收剂吸收剂的要求对被去除的VOCs有较大的溶解性蒸气压低易解吸化学稳定性和无毒无害性分子量低二、吸收设备主要设计指标液气比塔径塔高§5冷凝法控制VOCS污染适于废气体积分数10-2以上的有机蒸气常作为其它方法的前处理一、冷凝原理冷凝温度处于露点和泡点温度之间越接近泡点,净化程度越高00lll00gggiiiiiiffmff相平衡常数00lll00gggiiiiiiffmff相平衡常数12121nnyyyKKK时,对应的温度为露点Ki-相平衡常数露点温度12121nnyyyKKK时,对应的温度为露点Ki-相平衡常数露点温度时,对应温度为泡点11221nnKxKxKx泡点温度时,对应温度为泡点11221nnKxKxKx泡点温度冷凝计算压力P,温度t,进料中i组分的摩尔分率zi,计算液化率f、冷凝后气液组成xi、yi(1)iiiFzfFyfFxi组分的物料平衡(1)iiiFzfFyfFxi组分的物料平衡FBD物料平衡FBD物料平衡/fBF液化率/fBF液化率iiiymx(1)(1)(1)/(1)iiiiiiiiiiiizzxfmfmmfzzmyffmmff气液平衡关系代入上式得iiiymx(1)(1)(1)/(1)iiiiiiiiiiiizzxfmfmmfzzmyffmmff气液平衡关系代入上式得111nniiiixy由和上式可得f、xi、yi111nniiiixy由和上式可得f、xi、yi111nnnciiiiiiiiiQFHzDHyBhx冷凝热111nnnciiiiiiiiiQFHzDHyBhx冷凝热二、冷凝类型和设备接触冷凝被冷凝气体与冷却介质直接接触喷射塔、喷淋塔、填料塔、筛板塔mQKAt表面冷凝(间接冷却)冷凝气体与冷却壁接触列管式、翅管空冷、淋洒式、螺旋板传热方程mQKAt表面冷凝(间接冷却)冷凝气体与冷却壁接触列管式、翅管空冷、淋洒式、螺旋板传热方程冷凝系统的设计给定脱除效率、出口浓度确定冷凝温度冷凝温度冷凝剂类型计算冷凝器的热负荷热负荷+热传递系数冷凝器尺寸68outin,gin,g7601010.01/110Pcc气液平衡出口VOCs分压冷凝温度68outin,gin,g7601010.01/110Pcc气液平衡出口VOCs分压冷凝温度§6吸附法控制VOCS污染一、吸附工艺(处理中低浓度废气)脱附一、吸附工艺活性炭吸附VOCs的性能最佳(不易与极性分子相结合)亦有部分VOCs不易解吸,不宜用活性炭吸附二、吸附容量利用波拉尼曲线估算三、多组分吸附过程•各组分均等吸附于活性炭上•挥发性强的物质被弱的物质取代四、活性炭的吸附热物理吸附吸附热=凝缩热+润湿热估算式nqma-吸附热,kJ/kg炭-吸附蒸气量,m3/kg炭-常数,表10-16qa,mn-吸附热,kJ/kg炭-吸附蒸气量,m3/kg炭-常数,表10-16qa,mn§7生物法控制VOCS污染一、生物法控制VOCS污染原理微生物将有机成分作为碳源和能源,并将其分解为CO2和H2O二、生物法处理VOCS工艺生物洗涤塔(悬浮生长系统)生物滴滤塔生物滴滤塔生物膜内降解的数学模型微元物料平衡费克定律+米-门公式d0dNray2e2d0dcacDyKc生物滴滤塔液膜内传递的数学模型VOCs降解简化模型22s22()[1]cycDryz0hggh0h22cghexp[][CO][CO][1exp()]iiifLkKWzccQJKfLkKWzRcQJK生物过滤塔(附着生长系统)111mhmmh(n1,n0)11lnln(n1)(n0)nnniiibKKznnvbKzvbKzvK传质模型+生物降解模型VOCs降解模型111mhmmh(n1,n0)11lnln(n1)(n0)nnniiibKKznnvbKzvbKzvK

1 / 51
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功