第一章地球上水的性质与分布地球上水的物理性质地球上水的化学性质(自学)地球上水的分布与水资源我国及世界的水资源§2.1地球上水的物理性质水的形态及其物理性质水的热力学性质水温水的密度水色与透明度一、水的形态及其转化地球上的水以气态、液态和固态三种形式存在,在常温下三相可以相互转化。1.水分子的结构由一个氧原子和两个氢原子组成。键角∠HOH=104031’,O-H键长为0.9568埃。因此,水具有极性结构,以单分子、双分子、三分子聚合体形式存在。2.水的三态及其转化随着水温升高,聚合水分子减少,而单分子增多;水温降低,聚合水分子增多,单水分子减少;水温3.98℃时,双分子最多,密度最大,比重为1。固态水结构水分子有完整正四面体结构形态,键角增为109028’键距增至1.01埃。冰晶内在矛盾主要是氢键的凝聚力和氢核的振动、水分子的热运动,前者为吸引因素,后二者为排斥因素。液态水结构理论模型大体分连体理论和混合理论,但其忽略液态任意性特点,因此,提出“闪动簇团”模型。水的三态二、水的热学性质水是所有固体和流体中热容量最大的物质之一,能吸收相当多的热量而不损害其稳定性。0℃水直接蒸发潜热为2500J/g,100℃汽化潜热为2257J/g,0℃冰融解潜热为1404J/g,冰直接升华潜热为1401+2500=3901J/g。三、水温水的温度是一很重要的物理特性,影响水中生物、水体净化和人类对水的利用。太阳辐射是主要热源之一。1、海水的温度a.海水热量的收支b.海水温度的分布海水温度水平分布特征海水温度垂直分布特征C.海水温度随时间的变化水温的日变水温的年变d.海冰P13-142、河水温度农田灌溉、水生养殖、水工建筑物等有重要意义。受太阳辐射、气温等地带性因素控制,因而体现地带性规律。还受补给源影响,有时空上变化。我国河流水温受大陆性气候影响年变幅大,日变幅小。3、湖泊、水库水温受水气界面上增温与冷却和湖泊内部紊动、对流混合作用影响,使水温分布存在差异。有日、月、年的变化。月平均最高值出现在7、8月,最低值出现在1、2月。我国水温年变幅最大是太湖,达38℃。高山、高原年变幅最小。4、地下水的水温地下水的埋藏深度不同,温度变化规律不同。近地表受气温影响;年常温层变化小,<0.1℃;常温层下随着深度增加升高。地下水在一定地质条件下,受内部热能影响而形成地下热水。地热异常区为地热田。类型非常冷水极冷水冷水温水热水极热水沸腾水温度<00-44-2020-3737-4242-100>100表1-4地下水温度分类(℃)四、水的密度1、纯水的密度水温℃-20-100(冰)0(水)3.9810100(水)密度(g/cm3)0.94030.91860.91670.99991.00000.99970.9584表1-6水的密度随温度变化2、海水的密度指单位体积内所含海水的质量,其单位为g/cm3。海水密度是实用盐度(s)、温度(t)和压力(p)的函数。因此,海水密度可用海水状态方程表示:ρ(s,t,p)=ρ(s,t,0)/[1-10ρ/k(s,t,p)](1-3)式中,ρ为海水密度;k为海水正割体积弹性模量。五、水色与透明度1、水色水体对光的选择吸收和散射作用的结果,以水色计测量。水色常用水色计测定。水色计由21种颜色组成,由深蓝到黄绿直到褐色,并以号码1-21代表水色。号码越小,水色越高;号码越大,水色越低。2、透明度透明度是表示各种水体能见程度的一个量度,以透明度板测量。水色和透明度,都反映了水体的光学特性。水面上光线越强,透入越深,透明度就越大;反之则小。水色越高透明度越大,水色越低透明度越小,见表1-7。大西洋的马尾藻海透明度达66.5米。九寨沟天然水的化学成分天然水的矿化过程天然水的分类水体的化学性质§2.2地球上水的化学性质(自学)一、天然水的化学成分目前各种水体里已发现80多种元素。天然水中各种物质按性质通常分为三大类:悬浮物质>100nm的物质颗粒;胶体物质粒径为100-1nm的多分子聚合体;溶解物质粒径小于1nm的物质。K+、Na+、Ca2+、Mg2+和Cl-、SO42-、HCO3-、CO32-为天然水中的八大离子。还有Fe、Mn、Cu、F、Ni、P、I等重金属、稀有金属、卤素和放射性元素等微量元素;水中溶解的气体有O2、CO2、N2,特殊条件下也有H2S、CH4等。总之,无论哪种天然水,八种主要离子的含量都占溶解质总量的95-99%以上。天然水中各种元素的离子、分子与化合物的总量称为矿化度。各种溶解质在天然水中的累积和转化,是天然水的矿化过程。二、天然水的矿化过程1、溶滤作用:土壤和岩石中某些成分进入水中的过程。2、吸附性阳离子交替作用:天然水中离子从溶液中在转移到胶体上是吸附过程。H+>Fe3+>Al3+>Ba2+>Ca2+>Mg2+>K+>NH4+>Na+>Li+3、氧化作用:围岩的矿物氧化和使水中有机物氧化。2FeS2+7O2+2H2O=2FeSO4+2H2SO412FeSO4+3O2+6H2O=4Fe2(SO4)3+2Fe2O3·3H2O游离的硫酸进而侵入围岩中的CaCO3。CaCO3+H2SO4=CaSO4+CO2↑+2H2O4、还原作用:天然水若与含有机物的围岩(油泥、石油等)接触,或受到过量的有机物污染,碳氢化合物可以使水中的硫酸盐还原。CH4+CaSO4=CaS+CO2↑+2H2OCaS+CO2+H2O=CaCO3↓+H2S5、蒸发浓缩作用:在干旱地区,内陆湖和地下水正在经历盐化作用。蒸发浓缩沉积顺序是Al、Fe、Mn的氢氧化物,Ca、Mg的碳酸盐、硫酸盐和磷酸盐,Na的硫酸盐,Na、K的氯化物,Ca、Mg的氯化物,最后为硝酸盐。6、混合作用:雨水渗入补给地下水,地下水补给河水,河水注入湖泊或大海,河口段的潮水上溯,滨海含水层的海水入侵等,都是天然水的混合。三、天然水的分类1、按水化学成分分类2、按矿化度分类3、按主要离子成分比例分类(1)地表水分类(前苏联)阿列金提出一个简单的水化学分类系统。首先按占优势的阴离子将天然水分为三类:重碳酸盐类(C)、硫酸盐类(S)、氯化物类(Cl)。其次,对每一类天然水按占多数的阳离子分为钙质(Ca)、镁质(Mg)、钠质(Na)三组。然后,在每一组内又按各种离子摩尔的比例关系,分为四个水型:Ⅰ型:[HCO3-]>[Ca2++Mg2+]。Ⅰ型水是低矿化水,系由火成岩溶滤或离子交换作用形成的。Ⅱ型:[HCO3-]<[Ca2++Mg2+]<[HCO3-+SO42-)。Ⅱ型水是低矿化和中等矿化水,多由火成岩、沉积岩的风化物与水相互作用形成。河水、湖水、地下水大多属于这一类型。Ⅲ型:[HCO3-+SO42-]<[Ca2++Mg2+]或[Cl-]>[Na+]。Ⅲ型水包括高矿化度的地下水、湖水和海水。Ⅳ型:[HCO3-]=0。Ⅳ型水是酸性水,pH<4.5时,水中游离的CO2和H2CO3、HCO3-的浓度为零。例如,沼泽水、硫化矿床水和煤田矿坑水。按此系统共分27个类型。表1-9天然水化学分类表(2)地下水化学分类地下水化学分类方法很多,现介绍C.A.舒卡列夫的分类方法,见表1-10。这个分类法既考虑了各主要离子成分的摩尔百分数,又考虑了水的矿化度。四、水体的化学性质在水文循环过程中,水经历了各种各样的环境,携带各种物质一起迁移,并常常由一种形态转化为另一种形态,导致各种元素在不同水体中的分散和富集。1、大气水的化学组成及特性大气降水含有多种离子及微生物和灰尘。但也是溶解物质最少的天然水,雨水的矿化度较低,一般为20—50毫克/升,在海滨有时超过100毫克/升。化学成分和性质特点:溶解气体含量近于饱和;降水普遍显酸性,矿化度最低。2、海水的化学组成及特点海水的盐度:单位质量的海水中所含溶解物质的质量。以电导测盐法进行研究。1979年第17届国际海洋物理协会通过决议,将盐度分为绝对盐度和实用盐度。1)绝对盐度(SA)定义为海水中溶解物质的质量与海水质量的比值。在实际工作中,此量不易直接量测,而以实用盐度代替。2)实用盐度(S)在温度为15℃、压强为一个标准大气压下的海水样品的电导率,与质量比为32.4356×10-3的标准氯化钾(KCl)溶液的电导率的比值K15来定义。当K15精确地等于1时,海水样品的实用盐度恰好等于35。实用盐度根据比值K15由下述方程式来确定:3、河水化学成分的特点河水流动迅速,交替期平均只有16天。河水与河床砂石接触时间短,其矿化作用很有限。河水的水化学属性几乎完全取决于补给水源的性质及比例。(1)河水的矿化度普遍低。一般河水矿化度小于1克/升,平均只有0.15-0.35克/升。在各种补给水源中,地下水的矿化度比较高,而且变化大;冰雪融水的矿化度最低,由雨水直接形成的地表径流矿化度也很小。(2)河水中各种离子的含量差异很大。河水中各种离子含量见表1-17、1-12。其含量顺序:(3)河水化学组成的空间分布有差异性大的江河,流域范围广,流程长,流经的区域条件复杂,并有不同区域的支流汇入,各河段水化学特征的不均一性就很明显。(4)河水化学组成的时间变化明显河水补给来源随季节变化明显,因而水化学组成也随季节变化。4、湖水化学成分的特点湖泊是陆地表面天然洼陷中流动缓慢的水体。湖泊的形态和规模、吞吐状况及所处的地理环境,造成了湖水化学成分及其动态的特殊性。在湿润地区,年降水量大于年蒸发量,湖泊多为吞吐湖,水流交替条件好,湖水矿化度低,为淡水湖。在干旱地区,湖面年蒸发量远大于年降水量,内陆湖的入湖径流全部耗于蒸发,导致湖水中盐分积累,矿化度增大,形成咸水湖或盐湖。不同地区湖泊具有不同的化学成分和矿化度。湖水与海水在化学成分上的差异,主要体现在湖水主要离子之间,无一定比例关系。(1)湖水的矿化度有差异。按照矿化度,通常将湖泊分为淡水湖(<1克/升)、微咸水湖(1—24.7克/升)、咸水湖(24.7—35克/升)、盐湖(>35克/升)几种类型。(2)湖中生物作用强烈。营养元素(N、P)在湖水、生物体、底质中循环,各地的淡水湖泊都有不同程度的富营养化的趋势。(3)湖水交替缓慢,深水湖有分层性。随着水深的增加,溶解氧的含量降低,CO2的含量增加。在湖水停滞区域,会形成局部还原环境,以致湖水中游离氧消失,出现H2S、CH4类的气体。5、地下水的化学特征地下水化学组成类型之多,地区性差异之大,是其它天然水不可比的。关于地下水化学成分的起源和形成过程,至今仍有许多长期争论的问题没有解决。地下水化学基本特点如下:(1)地下水充填于岩石、土壤空隙中,与岩石、土壤广泛接触渗流速度很小,循环交替缓慢,而且地下水贮存于岩石圈上部相当大的深度(10公里),构成了地下水圈。(2)矿化度变化范围大,从淡水直到盐水。在淡水中阴离子以HCO3-为主,阳离子以Ca2+为主。随着矿化度的增加,阴离子按HCO3-→SO42-→Cl-次序递增;阳离子中Na+的含量增多,逐渐代替Ca2+成为主要成分,而且Mg2+的含量稍有增加。(3)地下水的化学成分的时间变化极为缓慢,常需以地质年代衡量。(4)地下水与大气接触有很大的局限性,仅限于距地表最近的含水层,此层可溶入氧气成为地下水氧化作用带。然而地下水中CO2的含量比较多,因为生物的呼吸、有机质的分解,使土壤空气中C02的含量可达1-7%。如果地下水交替缓慢,则氧很快耗尽,成为还原环境。围岩中若含有机质,则地下水便富集H2S、CH4等气体。地球上水的分布水资源(涵义)与特性世界水资源我国水资源§2.3地球上水的分布与水资源一、地球上水的分布地球总面积为5.1亿km2,其中海洋面积为3.613亿km2(表1-19),约占地球总面积的70.8%。海洋的总水量为13.38亿km3,占地球总水量的96.5%,折合成水深可达3700m,如果平铺在地球表面,平均水深可达2640m。除海洋外,还有湖泊、河流、沼泽、冰川等。地表约四分之三被水所覆盖。地表之上的大气中的水汽来自地球表面各种水体水面的蒸发、土壤蒸发及植物散发,并借助空气的