第-1-页共8页第六章《实数》小结复习设计:杨琳审核;王鹤楼班级:七年级()班姓名:时间:本章的知识网络结构:知识梳理一.数的开方主要知识点:【1】平方根:1.如果一个数x的平方等于a,那么,这个数x就叫做a的平方根;也即,当)0(2aax时,我们称x是a的平方根,记做:)0(aax。2.当a=0时,它的平方根只有一个,也就是0本身;3.当a>0时,也就是a为正数时,它有两个平方根,且它们是互为相反数,通常记做:ax。当a<0时,也即a为负数时,它不存在平方根。例1.(1)的平方是64,所以64的平方根是;(2)的平方根是它本身。(3)若x的平方根是±2,则x=;16的平方根是(4)当x时,x23-有意义。(5)一个正数的平方根分别是m和m-4,则m的值是多少?这个正数是多少?【2】算术平方根1.如果一个正数x的平方等于a,即ax2,那么,这个正数x就叫做a的算术平方根,记为:“a”,读作,“根号a”,其中,a称为被开方数。特别规定:第-2-页共8页0的算术平方根仍然为0。2.算术平方根的性质:具有双重非负性,即:)0(0aa。3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。因此,算术平方根只有一个值,并且是非负数,它只表示为:a;而平方根具有两个互为相反数的值,表示为:a。例2.(1)下列说法正确的是()A.1的立方根是1B.24C.81的平方根是3D.0没有平方根;(2)下列各式正确的是()A.981B.14.314.3C.3927D.235(3)2)3(的算术平方根是。(4)若xx有意义,则1x___________。(5)如果x、y分别是4-3的整数部分和小数部分。求x-y的值.【3】立方根1.如果x的立方等于a,那么,就称x是a的立方根,或者三次方根。记做:3a,读作,3次根号a。注意:这里的3表示的是开根的次数。一般的,平方根可以省写根的次数,但是,当根的次数在两次以上的时候,则不能省略。2.平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。例3.(1)64的立方根是(2)若9.28,89.233aba,则b等于()A.1000000B.1000C.10D.10000(3)下列说法中:①3都是27的立方根,②yy33,③64的立方根是2,④4832。其中正确的有()A、1个B、2个C、3个D、4个【4】无理数1.无限不循环小数的小数叫做无理数;它必须满足“无限”以及“不循环”这两个条件。在初中阶段,无理数的表现形式主要包含下列几种:(1)特殊意义第-3-页共8页的数,如:圆周率以及含有的一些数,如:2-,3等;(2)开方开不尽的数,如:39,5,2等;(3)特殊结构的数:如:2.01001000100001…(两个1之间依次多1个0)等。应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:2.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。例4.(1)下列各数:①3.141、②0.33333……、③75、④π、⑤252.、⑥32、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_______;是无理数的有_______。(填序号)(2)有五个数:0.125125…,0.1010010001…,-,4,32其中无理数有()个A2B3C4D5【6】实数1.有理数与无理数统称为实数。在实数中,没有最大的实数,也没有最小的实数;绝对值最小的实数是0,最大的负整数是-1。2.实数的性质:实数a的相反数是-a;实数a的倒数是a1(a≠0);实数a的绝对值|a|=)0()0(aaaa,它的几何意义是:在数轴上的点到原点的距离。3.实数的大小比较法则:实数的大小比较的法则跟有理数的大小比较法则相同:即正数大于0,0大于负数;正数大于负数;两个正数,绝对值大的就大,两个负数,绝对值大的反而小。(在数轴上,右边的数总是大于左边的数)。对于一些带根号的无理数,我们可以通过比较它们的平方或者立方的大小来比较这两个无理数的大小。4.实数的运算:在实数范围内,可以进行加、减、乘、除、乘方、开方六种运算。运算法则和运算顺序与有理数的一致。例5.(1)下列说法正确的是();A、任何有理数均可用分数形式表示;B、数轴上的点与有理数一一对应;第-4-页共8页C、1和2之间的无理数只有2;D、不带根号的数都是有理数。(2)a,b在数轴上的位置如图所示,则下列各式有意义的是()A、baB、abC、baD、ab(3)比较大小(填“”或“”).310,3320,76______67,21521,(4)数7,2,3的大小关系是()A.732B.372C.273D.327(5)将下列各数:51,3,8,23,用“<”连接起来;______________________________________。(6)若2,3ba,且0ab,则:ba=。(7)计算:32278115.041323811613125.0(8)已知:064.01,121732yx,求代数式3245102yyxx的值。a0b第-5-页共8页第六章《实数》复习训练设计:杨琳审核;王鹤楼班级:七年级()班姓名:时间:一、考查题型:1.-1的相反数的倒数是2.已知|a+3|+b+1=0,则实数(a+b)的相反数3.数-3.14与-Л的大小关系是4.和数轴上的点成一一对应关系的是5.和数轴上表示数-3的点A距离等于2.5的B所表示的数是6.在实数中Л,-25,0,3,-3.14,4无理数有()(A)1个(B)2个(C)3个(D)4个7.一个数的绝对值等于这个数的相反数,这样的数是()(A)非负数(B)非正数(C)负数(D)正数8.若x<-3,则|x+3|等于()(A)x+3(B)-x-3(C)-x+3(D)x-39.下列说法正确是()(A)有理数都是实数(B)实数都是有理数(B)带根号的数都是无理数(D)无理数都是开方开不尽的数10.实数在数轴上的对应点的位置如图,比较下列每组数的大小:(1)c-b和d-a(2)bc和ad二、考点训练:1.判断题:(1)如果a为实数,那么-a一定是负数;()(2)对于任何实数a与b,|a-b|=|b-a|恒成立;()(3)两个无理数之和一定是无理数;()(4)两个无理数之积不一定是无理数;()(5)任何有理数都有倒数;()(6)最小的负数是-1;()(7)a的相反数的绝对值是它本身;()第-6-页共8页(8)若|a|=2,|b|=3且ab0,则a-b=-1;()2.把下列各数分别填入相应的集合里-|-3|,21.3,-1.234,-227,0,-9,-3-18,-Л2,8,(2-3)0,3-2,ctg45°,1.2121121112......中无理数集合{}负分数集合{}整数集合{}非负数集合{}3.已知1x2,则|x-3|+(1-x)2等于()(A)-2x(B)2(C)2x(D)-24.下列各数中,哪些互为相反数?哪些互为倒数?哪些互为负倒数?-3,2-1,3,-0.3,3-1,1+2,313互为相反数:互为倒数:互为负倒数:*5.已知x、y是实数,且(x-2)2和|y+2|互为相反数,求x,y的值6.a,b互为相反数,c,d互为倒数,m的绝对值是2,求|a+b|2m2+1+4m-3cd=。三、解题指导:1.下列语句正确的是()(A)无尽小数都是无理数(B)无理数都是无尽小数(C)带拫号的数都是无理数(D)不带拫号的数一定不是无理数。2.和数轴上的点一一对应的数是()(A)整数(B)有理数(C)无理数(D)实数3.零是()(A)最小的有理数(B)绝对值最小的实数(C)最小的自然数(D)最小的整数4.如果a是实数,下列四种说法:第-7-页共8页(1)a2和|a|都是正数,(2)|a|=-a,那么a一定是负数,(3)a的倒数是1a,(4)a和-a的两个分别在原点的两侧,几个是正确的()(A)0(B)1(C)2(D)3*5.比较下列各组数的大小:(1)3445(2)32312(3)ab0时,1a1b6.若a,b满足|4-a2|+a+ba+2=0,则2a+3ba的值是*7.实数a,b,c在数轴上的对应点如图,其中O是原点,且|a|=|c|(1)判定a+b,a+c,c-b的符号(2)化简|a|-|a+b|+|a+c|+|c-b|*8.数轴上点A表示数-1,若AB=3,则点B所表示的数为9.已知x0,y0,且y|x|,用连结x,-x,-|y|,y。10.最大负整数、最小的正整数、最小的自然数、绝对值最小的实数各是什么?11.绝对值、相反数、倒数、平方数、算术平方根、立方根是它本身的数各是什么?12.把下列语句译成式子:(1)a是负数;(2)a、b两数异号;(3)a、b互为相反数;(4)a、b互为倒数;(5)x与y的平方和是非负数;(6)c、d两数中至少有一个为零;(7)a、b两数均不为0。*13.数轴上作出表示2,3,-5的点。四.独立训练:1.0的相反数是,3-л的相反数是,3-8的相反数是;第-8-页共8页-л的绝对值是,0的绝对值是,2-3的倒数是2.数轴上表示-3.2的点它离开原点的距离是。A表示的数是-12,且AB=13,则点B表示的数是。3-33,л,(1-2)º,-227,0.1313…,-3-1,1.101001000…(两1之间依次多一个0),中无理数有,整数有,负数有。4.若a的相反数是27,则|a|=;5.若|a|=2,则a=5.若实数x,y满足等式(x+3)2+|4-y|=0,则x+y的值是6.实数可分为()(A)正数和零(B)有理数和无理数(C)负数和零(D)正数和负数*7.若2a与1-a互为相反数,则a等于()(A)1(B)-1(C)12(D)138.当a为实数时,a2=-a在数轴上对应的点在()(A)原点右侧(B)原点左侧(C)原点或原点的右侧(D)原点或原点左侧9.计算:(1)3312460.02711251410.求下式中x的值:(1)9(x-1)2=64;(2)1x5443(2+3)11.已知2x-1的平方根是±6,2x+y-1的算术平方根是5,求2x-3y+11的平方根.17.已知x的两个不相等的平方根是2a+3和1-3a,y的立方根是a,求x+y