电磁场与电磁波复习题一、填空题1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。散度与通量的关系是矢量场中任意一点处通量对体积的变化率。2、散度在直角坐标系的表达式zAyAxAzyxAAdiv;散度在圆柱坐标系下的表达;3、矢量函数的环量定义矢量A沿空间有向闭合曲线C的线积分,旋度的定义过点P作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。当S点P时,存在极限环量密度。二者的关系ndSdCeArot;旋度的物理意义点P的旋度的大小是该点环量密度的最大值;点P的旋度的方向是该点最大环量密度的方向。4.矢量的旋度在直角坐标系下的表达式。5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。梯度的大小为该点标量函数的最大变化率,即该点最大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数的最大变化率,即该点最大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.;6、用方向余弦cos,cos,cos写出直角坐标系中单位矢量le的表达式;7、直角坐标系下方向导数ul的数学表达式是coscoscosluuuu=++xyz,梯度的表达式xyzGeeegradxyz;8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。9、麦克斯韦方程组的积分形式分别为0()slsslsDdSQBEdldStBdSDHdlJdSt其物理描述分别为10、麦克斯韦方程组的微分形式分别为020E/E/tB0B//tBcJE其物理意义分别为11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。12、坡印廷矢量的数学表达式20ScEBEH,其物理意义表示了单位面积的瞬时功率流或功率密度。功率流的方向与电场和磁场的方向垂直。表达式()sEHdS的物理意义穿过包围体积v的封闭面S的功率。13、电介质的极化是指在外电场作用下,电介质中出现有序排列电偶极子以及表面上出现束缚电荷的现象。两种极化现象分别是、,产生的现象分别有、、。描述电介质极化程度或强弱的物理量是P。14、折射率的定义是/ncv,折射率与波速和相对介电常数之间的关系分别为/ncv、2rn。15、磁介质是指在外加磁场的作用下,能产生磁化现象,并能影响外磁场分布的物质,磁介质的种类可分别有抗磁质、顺磁质、铁磁质、亚铁磁质。介质的磁化是指原来不显示磁性的磁介质在外磁场B0的作用下显示磁性,产生附加磁场的现象。描述介质磁化程度的物理量是m。16、介质的三个物态方程分别是cDEBHJE。17、静态场是指静态场是指场量不随时间变化的场,静态场包括静电场、恒定电场及恒定磁场。分别是由静止电荷或静止带电体、恒定电流的导体、恒定电流的导体产生的。18、静电场中的麦克斯韦方程组的积分形式分别为00svlslsDdsdvEdlBdsHdlJds;静电场中的麦克斯韦方程组的微分形式分别为00DEBHJ;19、对偶原理的内容是如果描述两种物理现象的方程具有相同的数学形式,并且有相似的边界条件或对应的边界条件,那么它们的数学解的形式也将是相同的;叠加原理的内容是若1和2分别满足拉普拉斯方程,即012和022,则1和2的线性组合:21ab必然也满足拉普拉斯方程:0a212)(b式中a、b均为常系数;唯一性定理的内容是唯一性定理可叙述为:对于任一静态场,在边界条件给定后,空间各处的场也就唯一地确定了,或者说这时拉普拉斯方程的解是唯一的。。20、电磁场的赫姆鹤兹方程组是22020EEt0,22020BBt0。21、电磁波的极化是指均匀平面波传播过程中,在某一波阵面上,电场矢量的振动状态随时间变化的方式为波的极化(或称为偏振),其三种基本形式分别是线极化波、圆极化波、椭圆极化波。22、工程上经常用到损耗正切,其无耗介质的表达式是tan/c,其表示的物理含义是传导电流和位移电流密度的比值。损耗正切越大说明损耗越大。有耗介质的损耗介质是个复数,说明均匀平面波中电场强度矢量与磁场强度矢量之间存在相位差。23、一般用介质的损耗正切不同取值说明介质在不同情况下的性质。一个介质是良介质的损耗正切远小于1,属于非色散介质;当表现为良导体时,损耗正切为远大于1,属于色散介质。24、波的色散是指同一媒质中,不同频率的波将以不同的速度传播,其相应的介质为色散媒质。波的色散是由媒质特性所决定的。色散介质分为正常色散和非正常色散介质,前者波长大的波,其相速度大,群速小于(大于、小于)相速;后者是波长大的波,其相速度小,群速大于(大于、小于)相速;在无色散介质中,不同波长的波相速度相等,其群速等于(等于、不等于)相速。25、色散介质与介质的折射率的关系是指波的传播速度即相速取决于介质折射率的实部,因而随频率而变,不同频率的波将以不同的速率在其中传播。耗散介质是指①实际的介质都是有损耗的,非理想介质是有损耗介质也称为耗散介质,在这里是指电导率但仍然保持均匀、线性及各向同性等特性。②是指其折射率的虚部为非零值的媒质,这时波在传播的过程中会逐渐衰减。26、基波的相速为k/,群速就是波包或包络的传播速度,其表达式为/gvddk。一般情况下,相速与群速不相等,它是由于波包通过有色散的媒质,不同单色波分量以不同相速向前传播引起的。27、趋肤效应是指随着电流变化频率的升高,导体上所流过的电流将越来越集中于导体的表面附近,导体内部的电流却越来越小,趋肤深度的定义是当交变电流通过导体时,电流密度在导体横截面上的分布将是不均匀的,并且随着电流变化频率的升高,导体上所流过的电流将越来越集中于导体的表面附近,导体内部的电流却越来越小,这种现象称为趋肤效应,趋肤深度的的表达式12。二、名词解释1、传导电流、位移电流自由电荷在导电媒质中作有规则运动而形成电介质内部的分子束缚电荷作微观位移而形成2、电介质的极化、磁介质的磁化在外电场作用下,电介质中出现有序排列电偶极子以及表面上出现束缚电荷的现象。在外磁场的作用下,物质中的原子磁矩将受到一个力矩的作用,所有原子磁矩都趋于与外磁场方向一致的排列,彼此不再抵消,结果对外产生磁效应,影响磁场分布,这种现象称为物质的磁化。3、静电场、恒定电场、恒定磁场静电场是静止电荷或静止带电体产生的场。恒定电场载有恒定电流的导体内部及其周围介质中产生的电场恒定电流的导体周围或者内部不仅存在电场,而且存在磁场,这个磁场不随时间变化就是恒定磁场。4、泊松方程、拉普拉斯方程静电场的电位函数满足的方程称为泊松方程。如果场中某处有ρ=0,即在无源区域,静电场的电位函数满足的方程将这种形式的方程称为拉普拉斯方程。5、对偶原理、叠加原理、唯一性定理如果描述两种物理现象的方程具有相同的数学形式,并且有相似的边界条件或对应的边界条件,那么它们的数学解的形式也将是相同的,这就是对偶原理。叠加原理:220唯一性定理:对于任一静态场,在边界条件给定后,空间各处的场也就唯一地确定了,或者说这时拉普拉斯方程的解是唯一的。6、镜像法、分离变量法、格林函数法、有限差分法镜像法是利用一个与源电荷相似的点电荷或线电荷来代替或等效实际电荷所产生的感应电荷,这个相似的电荷称为镜像电荷,然后通过计算由源电荷和镜像电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场,这种方法称为镜像法。分离变量法是求解拉普拉斯方程的基本方法,该方法把一个多变量的函数表示成为几个单变量函数的乘积后,再进行计算。格林函数法用于求解静态场中的拉普拉斯方程,泊松方程及时变场中的亥姆霍兹方程。先求出与待解问题具有相同边界形状的格林函数。知道格林函数后通过积分就可以得到任意分布源的解。有限积分法在待求场域内选取有限个离散点,在各个离散点上以差分方程近似代替各点上的微分方程,从而把以连续变量形式表示的位函数方程,转化为以离散点位函数值表示的方程组。结合具体边界条件求解差分方程组,即得到所选的各个离散点上的位函数值。7、电磁波、平面电磁波、均匀平面电磁波变化的电场产生变化的磁场,而变化的磁场又产生变化的电场,这样,变化电场和变化磁场之间相互依赖,相互激发,交替产生,并以一定速度由近及远地在空间传播出去。这样就产生了电磁波。平面电磁波:波振面为平面,且垂直于其传播方向的电磁波就是平面电磁波。在与波传播方向垂直的平面上,各点场量或的大小、方向、位相都相同的电磁波叫做平面电磁波。在自由空间传播的均匀平面电磁波(空间中没有自由电荷,没有传导电流),电场和磁场都没有和波传播方向平行的分量,都和传播方向垂直。此时,电矢量E,磁矢量H和传播方向k两两垂直8、电磁波的极化电磁波极化是指电磁波电场强度的取向和幅值随时间而变化的性质,在光学中称为偏振。如果这种变化具有确定的规律,就称电磁波为极化电磁波(简称极化波)。9、相速、群速v称为相速,每一等相位面沿传播方向运动的速度。为频率与波长的乘积。群速定义为/gvddk.群速的定义基于两种情况:①无损耗介质②有损耗介质非常窄的频带。一般情况下,相速与群速不相等,它是由于波包通过有色散的媒质,不同单色波分量以不同相速向前传播引起的。10、波阻抗、传播矢量电场与磁场的振幅比11、驻波、行波、行驻波向着Z方向传播的平面电磁波--行波幅度随着Z按照正弦变化的电磁振荡波,由入射行波与反射行波叠加形成驻波12、色散介质、耗散介质色散介质指能引起电磁波传播中发生色散现象(电磁波波的传播速度即相速取决于介质折射率的实部,因而随频率而变,不同频率的波将以不同的速率在其中传播)的介质称为色散介质。耗散介质是指其折射率的虚部为非零值的媒质,这时波在传播的过程中幅度会逐渐衰减从而造成能量的损失,这种介质叫做耗散介质。13、全反射、全折射当电磁波以某一入射角入射到两种媒质交界面上时,如果反射系数为0,则全部电磁能量都进入到第二种媒质,这种情况称为全折射。当电磁波入射到两种媒质交界面上时,如果反射系数1R,则投射到界面上的电磁波将全部反射回第一种媒质中,这种情况称为全反射。14、滞后位与动态位上面的分析说明,在时刻t,空间某点所观察到的矢量位和标量位是由crrtp/时刻的电流或电荷产生的,也就是说,在空间某点并不会立刻感受到波源的影响,而是要滞后一段时间crrp/,这个滞后效应是由于电磁波的速度为有限值而引起的,于是我们又可将随时间变化的位函数A和称为动态位或滞后位。三、简答题1、散度和旋度均是用来描述矢量场的,它们之间有什么不同?2、亥姆霍兹定理的描述及其物理意义是什么?3、分别叙述麦克斯韦方程组微分形式的物理意义?4、举例说明电磁波的极化的工程应用4、分别说明平面电磁波在无耗介质和有耗介质中的传播特性5、试论述介质在不同损耗正切取值时的特性?6、试论述介质的色散带来电磁波传播和电磁波接收的影响,在通信系统中一般采取哪些有效的措施?7、论述趋肤效应在高速或高频电路板设计中的电路布线、器件选型、板层设计中的应用?8、定性叙述电磁波在介质分界面上的反射和折射时,电磁波的幅度、相位和极化状态和方向变化关系9、一个矢量场一般是需要采用矢量函数描述,要用一个标量函数描述这个矢量场的条件是什么?电磁场中的应用举例四、计算