新课引入问题:cos45°=__cos30°=____cos15°2223cos()?30cos45cos)3045cos(人教A版数学必修4宁乡十三中许日尚探究问题cos()coscos?证明猜想大家同意吗?两角差的余弦公式得出结论(其中,α,β为任意角)()(C)公式的结构特征:左边:两角差的余弦右边:同名三角函数乘积的和sinsincoscos)cos(知识应用例1.利用差角的余弦公式求cos15°的值.解:cos15cos4530cos45cos30sin45sin30你会求sin75°的值了吗?4262122232245sin,(,),cos,5213cos().已知是第三象限角,求的值例2:所以cos(α-β)=cosαcosβ+sinαsinβ解:由4sin,,525cos,13又由是第三象限角,得354123355131365知识应用53)54(1sin1cos22得1312)135(1cos1sin22课堂练习sin)2cos(:1、证明的值。求、已知)4cos(),,2(,53cos2变式训练22)1560cos(15sin60sin15cos60cos1、sin)3sin(cos)3cos(2、213cos])3cos[(的值。求、已知cos,15060,53)30sin(310334215323)54(]30)30cos[(cos所以54)30cos53)30sin(180309015060(得由解回顾小结cos()coscossinsin()(C)1.探索并证明两角差的余弦公式2.所涉及的数学思想方法通过本节课的学习你有哪些收获?数形结合,化归转化,分类讨论经历了,猜想—探究—证明利用向量工具得出了公式:课后作业342.sinsin,coscos,55cos()选做:求1.必做:P137,2,3,43.课后思考:你能用cos(α-β),推导出cos(α+β)吗?再见谢谢大家!