第十一章三角形专题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

标题教学目标1.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性.2.探索并掌握三角形中位线的性质.3.了解全等三角形的概念,探索并掌握两个三角形全等的条件.4.了解等腰三角形的有关概念,探索并掌握等腰三角形的性质和一个三角形是等腰三角形的条件;了解等边三角形的概念并探索其性质.5.了解直角三角形的概念,探索并掌握直角三角形的性质和一个三角形是直角三角形的条件.6.体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形.重点、难点1重点:三角形的相似及全等及解直角三角形的基础知识2难点:综合应用这些知识解决三角形的应用问题教学内容考点精析考点一、三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边.6.三角形具有稳定性.1.(1)(2010山东济宁)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形思路点拨:三角形的内角和为180°,三个内角度数的份数和是9,每一份度数是20,则三个内角度数分别为40°、60°、80°,是锐角三角形.答案:B(2)三角形的三边分别为3,1-2a,8,则a的取值范围是()A.-6<a<-3B.-5<a<-2C.2<a<5D.a<-5或a>-2思路点拨:涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性.解析:根据三角形三边关系得:8-3<1-2a<8+3,解得-5<a<-2,应选B.2.(1)(2010宁波市)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个考点:等腰三角形答案:A【变式1】已知a,b,c为△ABC的三条边,化简得_________.【变式2】有五根细木棒,长度分别为1cm,3cm,5cm,7cm,9cm,现任取其中的三根木棒,组成一个三角形,问有几种可能()A.1种B.2种C.3种D.4种【变式3】等腰三角形中两条边长分别为3、4,则三角形的周长是_________.【变式4】如果三角形的一个内角等于其他两个内角的和,这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定答案:1.思路点拨:本题利用三角形三边关系,使问题代数化,从而化简得出结论.解析:∵a,b,c为△ABC的三条边∴a-b-c<0,b-a-c<0∴=(b+c-a)+(a+c-b)=2c.2.解析:只有3、5、7或3、7、9或5、7、9三种.应选C.3.解析:(1)当腰为3时,周长=3+3+4=10;(2)当腰为4时,周长=3+4+4=11.所以答案为10或11.4.思路点拨:理解直角三角形定义,结合三角形内角和得出结论.解析:若△ABC的三个内角∠A、∠B、∠C中,∠A+∠B=∠C又∠A+∠B+∠C=180°,所以2∠C=180°,可得∠C=90°,所以选C考点二、三角形的“四心”和中位线三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.1.内心:三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等.2.外心:三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等.3.重心:三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍.4.垂心:三角形三条高线的交点.5.三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.要点诠释:(1)三角形的内心、重心都在三角形的内部.(2)钝角三角形的垂心、外心都在三角形的外部.(3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点.(4)锐角三角形的垂心、外心都在三角形的内部.3.(1)与三角形三个顶点距离相等的点是这个三角形的()A.二条中线的交点B.二条高线的交点C.三条角平分线的交点D.三边中垂线的交点考点:线段垂直平分线的定理.思路点拨:三角形三边垂直平分线的交点是外心,是三角形外接圆的圆心,到三角形三个顶点距离相等.答案D若改成二边中垂线的交点也正确.4.一个三角形的内心在它的一条高线上,则这个三角形一定是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形考点:三角形角平分线定理.思路点拨:本题考查三角形的内心是三角形角平分线的交点,若内心在一条高线上,又符合三线合一的性质.所以该三角形是等腰三角形.故选B.【变式1】如图,已知△ABC中,∠A=58°,如果(1)O为外心;(2)O为内心;(3)O为垂心;分别求∠BOC的度数.【变式2】如果一个三角形的内心,外心都在三角形内,则这个三角形是()A.锐角三角形B.只有两边相等的锐角三角形C.直角三角形D.锐角三角形或直角三角形【变式3】求证:三角形的一条中位线与第三边上的中线互相平分答案:1.解析:∠A是锐角时,(1)O为外心时,∠BOC=2∠A=116°;(2)O为内心时,∠BOC=90°+∠A=119°;(3)O为垂心,∠BOC=180°-∠A=122°.2.解析:三角形的内心都在三角形内部;锐角三角形外心在三角形内部;直角三角形的外心在三角形斜边的中点上、钝角三角形的外心三角形外部.故选A.3.思路点拨:本题考查三角形的中位线定理,三角形的中位线平行于第三边且等于第三边的一半.解析:已知:如图,在△ABC中,AD=DB,BE=EC,AF=FC.求证:AE、DF互相平分.证明:连结DE、EF∵AD=DB,BE=CE∴DE∥AC(三角形中位线定理)同理EF∥AB∴四边形ADEF是平行四边形∴AE、DF互相平分(平行四边形的对角线互相平分)考点三、全等三角形1.定义:能完全重合的两个三角形叫做全等三角形.2.性质:(1)对应边相等(2)对应角相等(3)对应角的平分线、对应边的中线和高相等(4)周长、面积相等3.判定:(1)边角边(SAS)(2)角边角(ASA)(3)角角边(AAS)(4)边边边(SSS)(5)斜边直角边(HL)(适用于直角三角形)要点诠释:判定三角形全等至少必须有一组对应边相等.5.对于下列各组条件,不能判定△≌△的一组是()A.∠A=∠A′,∠B=∠B′,AB=A′B′B.∠A=∠A′,AB=A′B′,AC=A′C′C.∠A=∠A′,AB=A′B′,BC=B′C′D.AB=A′B′,AC=A′C′,BC=B′C′思路点拨:判定三角形全等的条件中,已知两边及一角必须是两边及其夹角,而已知两角一边和三边都可以判定三角形全等.解析:A可利用ASA判定;B可利用SAS判定;D可利用SSS判定.而C是两边和一边对角对应相等,不能判定三角形全等.故选C.6.(2010湖南长沙)在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.第8题图考点:三角形全等的判定及性质.思路点拨:(1)利用ASA判定;(2)利用△BEC≌△DEC答案:(1)证明:∵四边形ABCD是正方形∴BC=CD,∠ECB=∠ECD=45°又EC=EC∴△ABE≌△ADE(2)∵△ABE≌△ADE∴∠BEC=∠DEC=∠BED∵∠BED=120°∴∠BEC=60°=∠AEF∴∠EFD=60°+45°=105°【变式1】两个三角形有以下三对元素对应相等,则不能判定全等的是()A.一边和任意两个角B.两边和它们的夹角C.两个角和它们一角的对边D.三角对应相等【变式2】如图,已知:AC=DB,要使≌,只需增加一个条件是___________.【变式3】如图,已知,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是________.答案:1.思路点拨:两个三角形中,三角对应相等不能证明三角形全等.解析:A的判定方法为ASA或AAS;B的判定方法为SAS;C的判定方法为AAS;要判定三角形全等必须有一个元素是边,所以D不能判定.故选D..2.思路点拨:增加条件判定三角形全等时,题中已有一条公共边这一条件,答案不唯一.解析:填AB=DC,可利用SSS;填∠ACB=∠DBC,可利用SAS.3.考点:利用三角形全等的性质证明线段或角相等.思路点拨:本题作出M到AB的距离,可以利用证三角形全等求距离.更简单的是利用角平分线上的点到角两边距离相等.解法一:过M作MD⊥AB于D,∴∠MDA=∠C=90°∵AM平分∠CAB,∴∠CAM=∠DAM∵AM=AM,∴△AMC≌△AMD(AAS),∴MD=CM=20cm解法二:过M作MD⊥AB于D∵∠C=90°,∴MC⊥AC∵AM平分∠CAB,∴MD=CM=20cm考点四、等腰三角形1.定义:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60°.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.7.(1)(2010湖北黄石)如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为_____________.思路点拨:等腰三角形的性质答案:45°(2)等腰三角形一腰上的高与底边所成的角等于()A.顶角的2倍B.顶角的一半C.顶角D.底角的一半思路点拨:本题适用于任何一种等腰三角形.总结规律,等腰三角形一腰上的高与底边所成的角等于顶角的一半.解析:如图,△ABC中,AB=AC,BD⊥AC于D,所以∠ABC=∠C,∠BDC=90°,所以∠DBC=90°-∠C=90°-(180-∠A)=∠A,答案:B.8.△ABC等边三角形,BD是中线,延长BC到E,使CE=CD,不添加辅助线,请你写出尽可能多的结论.思路点拨:本题是先猜想再验证的探索性题型,关键是掌握等边三角形及三线合一的性质.答案:如:①DB=DE;②BD⊥AC;③∠DBC=∠DEC=30°;④△ABD≌△CBD;⑤∠CDE=30°;⑥BD平分∠ABC等.总结升华:等腰三角形是特殊的三角形,具有对称性,边、角之间的联系较多;三线合一的性质在解题时应用广泛,但经常被忽略,应注意灵活运用.【变式1】若一个三角形的两个内角分别为50°、80°,则这个三角形是_________三角形.【变式2】已知等腰△ABC中,∠ABC=∠ACB=2∠A,且BD⊥AC,垂足为D,求∠DBC的度数.答案:1.考点:等腰三角形的判定.思路点拨:会根据三角形内角的度数判断三角形的形状.解析:三角形的两个内角分别为50°、80°,则另一个内角为50°,这个三角形有两个角相等,所以是等腰三角形.总结升华:三角形是按边和角进行分类的,会根据题意判断三角形的形状.2.思路点拨:本题利用三角形内角和求出∠C,从而得出结论.解:∵等腰△ABC中,∠ABC=∠ACB=2∠A,∠ABC+∠C+∠A=180°∴∠C=72°,∵BD⊥AC,∴∠DBC+∠C=90°,∴∠DBC=90°-72°=考点五、直角三角形1.定义:有一个角是直角的三角形叫做直角三角形.2.性质:(1)直角三角形中两锐角互余;(2)直角三角形中,30°锐

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功