第5章5.1选择题1、在关联参考方向下,R、L、C三个元件的伏安关系可分别如(D)表示。A.dtdiCudiLuuGuiCCtLLLRR,)(1)0(,0B.dtdiCudiLuRiuCCtLLRR,)(1)0(u,0LC.tCCCLLRRdiCuudtdiLuGiu0)(1)0(,,D.tCCCLLRRdiCuudtdiLuRiu0)(1)0(,,2、一阶电路的零输入响应是指(D)。A.电容电压V0)0(Cu或电感电压V0)0(Lu,且电路有外加激励作用B.电容电流A0)0(Ci或电感电压V0)0(Lu,且电路无外加激励作用C.电容电流A0)0(Ci或电感电压A0)0(Li,且电路有外加激励作用D.电容电压V0)0(Cu或电感电流A0)0(Li,且电路无外加激励作用3、若1C、2C两电容并联,则其等效电容C=(A)。A.21CCB.2121CCCCC.2121CCCCD.21CC4、已知电路如图x5.1所示,电路原已稳定,开关闭合后电容电压的初始值)0(Cu等于(A)。A.V2B.V2C.V6D.V8图x5.1选择题4图5、已知V15)(tCetu,当s2t时V6Cu,电路的时间常数τ等于(B)。A.s458.0B.s18.2C.s2.0D.s1.06、二阶RLC串联电路,当CLR2____时,电路为欠阻尼情况;当CLR2____时,电路为临界阻尼情况(B)。A.、=B.、=C.、D.、+-6V1FCu+-0t22+-2V5.2填空题1.若L1、L2两电感串联,则其等效电感L=;把这两个电感并联,则等效电感L=。2.一般情况下,电感的电流不能跃变,电容的电压不能跃变。3.在一阶RC电路中,若C不变,R越大,则换路后过渡过程越长。4.二阶RLC串联电路,当R2CL/时,电路为振荡放电;当R=0时,电路发生等幅振荡。5.如图x5.2示电路中,开关闭合前电路处于稳态,0u=-4V,0ddtuC=2×104V/s。图x5.2填空题5图6.R1和C1F的并联电路与电流源IS接通。若已知当IS2A()t0,电容初始电压为1V时,utC()为V)e2(t()t0,则当激励IS增大一倍(即ISA4),而初始电压保持原值,t0时utC()应为V)e34(t。5.3计算题1.电路如图x5.3所示,(1)求图(a)中ab端的等效电容;(2)求图(b)中ab端的等效电感。(a)(b)图x5.3计算题1图解:(1)ab两端的等效电容21LL2121LLLL10F10F10F10Fab10Fabab6H6H6H6HFCab610)101011011()101011011(10(2)ab两端的等效电感2.电路图x5.4(a)所示,电压源Su波形如图x5.4(b)所示。(1)求电容电流,并画出波形图;(2)求电容的储能,并画出电容储能随时间变化的曲线。解:由图可知sttststtststttuC8740105755532010531510105)(666stAststAststAdttducticC871075053103101010)()(HLab1066)66(6)66(Su)(tiC-+F212345678910055V/Suust/所以电流波形图为电容储能储能变化曲线为3.如图x5.5(a)所示电路,A00)(Li,电压源Su的波形如图x5.5(b)所示。求当t=1s、t=2s、t=3s、t=4s时的电感电流iL。Su4HLi-+102-103154Ot/sV/Su(a)(b)图x5.5计算题3图解:电感电压与电流的关系为ttduLtit0)(1)()(i0各时段,电感电压的表达式为1234567810-10t/μsis/A12345678t/μsWC/J5-105.2stststststststttCWuCC8710)8(2575105.25310)4(2531105.2101025)(21)t(625625622ststststsVVtu34,401023,002,10)(所以,t=1s时,有10105.2)]01(5.2[41010410)1(|VVtdtit=2s时,有21105)]12(5.25.2[4105.210415.2)2(|VVtdtit=3s时,有3250415)3(Vdtit=4s时,有Vttdtti75.344024105)4010(415)4(||43434324.如图x5.6所示S闭合瞬间(t=0),求初始值uC(0+),、iC(0+)。解:t=0-时,s断开,等效电路如图x5.6(a)。VVVuicc1002080)0(,0)0(图x5.6计算题4图t=0+时,s闭合,等效电路如图x5.6(b)。Vuc100)0()0(ucAuicc210)0(80)0(80VSC+20V-+-2Cu105.如图x5.7所示电路的暂态过程中,求iL的初始值,稳态值以及电路的时间常数τ各等于多少?如R1增大,电路的时间常数τ如何变化?解:当t=0-时,s断开,等效电路如图如图x5.7(a)电路中的电流恒定不变AiL5.22210)0(由换路定理:当t=0+时,s闭合,等效电路如图如图x5.7(b),电路稳定后,在电路放电过程中时间常数,与R1无关所以R1增大,不变。6.如图x5.8已知:E=6V,R1=5Ω,R2=4Ω,R3=1Ω,开关S闭合前电路处于稳态,t=0时闭合开关S。求:换路瞬间的uL(0+)、iC(0+)。解:当t=0-时,s断开,电路处于稳态等效电路如图x5.8(a)。Vic0)0(VRRREuARREiL1)0(,1)0(313c31由换路定理:VuuAiiCCLL1)0()0(,1)0()0(当t=0+时,s闭合等效电路如图x5.8(a)。AiiLL5.2)0()0(5.02RLAiL0)(ARuEicc25.1)0()0(27.如图x5.9所示电路,t=0时开关K闭合,求t0时的uC(t)、iC(t)和i3(t)。已知:IS=5A,R1=10,R2=10,R3=5,C=250F,开关闭合前电路已处于稳态。解:当t=0-时,k断开,电路处于稳态,等效电路如图x5.9(a)。由换路定理:当t=0+时,k闭合,t=+∞时,电路达到新的稳态,等效电路如图x5.9(b)。电容两端的等效电阻:时间常数:VRiEuLL5)0()0(3AIis5)0(3VRiuc25)0()0(330)0(ciVuuCC25)0()0(AIRRRRiS2)(32113ViR10)()(u33C4//)(321RRRReqSCReq310VeeeuuututttCCCC100010001510)1025(10)()0()()(8.如图x5.10所示电路中,t=0时试用三要素法求出t≥0时的iL(t)和uL(t),并画出iL(t)的波形。(注:在开关动作前,电路已达稳态)。解:当t=0-时,开关S1闭合,S2打开,电路处于稳态,等效电路如图x5.10(a)。得AiL10110)0(由换路定理:当t=0+时,s1断开,s2闭合,达到新的稳态,等效电路如图5.10(b)。根据图5.10(c)求等效电阻:)(tiL的波形为AiiLL10)0()0(12222eqRAiL326)(sRLeq5.0tLedtdiLtu27)(AeeiiitittLLLL)73()]()0([)()(2iL/At/s10309.如图题x5.11所示电路在t0已处于稳态,在t=0时将开关S由1切换至2,求:(1)换路后的电容电压)(tuC;(2)t=20ms时的电容元件的储能。解:当t=0-时,开关S在位置1,电路处于稳态,等效电路如图x5.11(a)。t=∞时等效电路如图x5.11(b)。V0)(cut=20ms时:10.电路如图x5.12所示,电路原处于稳态。在t=0时将开关S由位置1合向位置2,试求t﹥0时iL(t)和i(t),并画出它们随时间变化的曲线。54V)0()0(V5490150010001500)0(cccuuu则0tV54)0((t)s025.010505005001500//750025.06ttceqeqeeuuCRRW0147.026.24105021)(21Wc(t)V26.245454(0.02)2628.0025.002.0tcueeucc解:t=0-时,电感相当于短路,等效电路如图x5.12(a):t→∞时,电感所在支路短路。等效电路如图x5.12(b):求等效电阻:求时间常数:11.在如图x5.13所示电路中,已知μF1H1V10CLUS,,,开关S原来合在触点1处,在t=0时,开关由触点1合到触点2处。求下列三种情况下的iuuuLRC和,,。(1)R=4000(2)R=2000(3)R=1000A3.015303015//30109)0(LiA2.015303015//30106)(Li)(5.02.0]2.03.0[2.0)]()0([)()(4500AeeeiiititttLLLL)(75.03.075.03.030)(15)()(4500AeetititittLLA3.0)0()0(LLii22.510//3015ReqsRLeq450015.221053解:已知kR4,而所以(过阻尼),放电过程是非振荡的。且0)0(,)0(LSciUu特征根2681)2(221LCLRLRp37321)2(222LCLRLRp可得电容电压,电流mAeeiVeeuttttc)(89.2,)773.077.10(37322683732268电阻电压VeeRiuttR)(56.113732268电感电压VeedtdiLuttL)773.077.10(2683732同理可解,R=2000时(临界阻尼):电容电压,电流电阻电压电感电压同理可解,R=1000(欠阻尼)时:电容电压,电流电阻电压电感电压,2101226kCLCLR2mAetiVettuttc500500)866sin(55.11)866sin774.5866cos10(VetRiutR500)866sin(55.11VettutL500)866sin774.5866cos10(AteiVetuttc1000100010)10001(10VteRiutR100020000VetutL1000)1000010(12.如图x5.14所示电路,在开关S闭合前已达稳态,t=0时S由1合向2,已知,,,,,F2.0H1Ω2V6V421CLRUUSS求t0时的)(ti。解:由图知0)0(,6)0(LciVu因此,0t时,电路的初始条件为Vuucc6)0()0(0)0()0(dtduCiiLLt0后,电路的方程为422c