第十二讲探究操作与新概念题型

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十二讲探究操作与新概念题型“新概念型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.1.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.2.平面上有两条直线AB、CD相交于点O,且∠BOD=150°(如图),现按如下要求规定此平面上点的“距离坐标”:(1)点O的“距离坐标”为(0,0);(2)在直线CD上,且到直线AB的距离为p(p>0)的点的“距离坐标”为(p,0);在直线AB上,且到直线CD的距离为q(q>0)的点的“距离坐标”为(0,q);(3)到直线AB、CD的距离分别为p,q(p>0,q>0)的点的“距离坐标”为(p,q).设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:(1)画出图形(保留画图痕迹):①满足m=1,且n=0的点M的集合;②满足m=n的点M的集合;(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式.(说明:图中OI长为一个单位长)3.对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1-x2|+|y1-y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.4.如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果点P在直线y=x-1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“临近点”.(1)判断点C(75,22)是否是线段AB的“临近点”,并说明理由;(2)若点Q(m,n)是线段AB的“临近点”,求m的取值范围.5.如图,概念:若双曲线y=kx(k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线y=kx(k>0)的对径.(1)求双曲线y=1x的对径.(2)若双曲线y=kx(k>0)的对径是102,求k的值.(3)仿照上述概念,概念双曲线y=kx(k<0)的对径.6.联想三角形外心的概念,我们可引入如下概念.概念:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.7.将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°,3]得△AB′C′,则S△AB′C′:S△ABC=;直线BC与直线B′C′所夹的锐角为度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.探究操作题型1:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移a个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移b个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为}{}{}{dbcadcba,,,.解决问题:(1)计算:{3,1}+{1,-2};(2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点B吗?在图1中画出四边形OABC.②证明四边形OABC是平行四边形.(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.2问题背景(1)如图22(1),△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空:四边形DBFE的面积S,△EFC的面积1S,△ADE的面积2S.探究发现22(1)(2)在(1)中,若BFa,FCb,DE与BC间的距离为h.请证明2124SSS.拓展迁移(3)如图22(2),□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用..(2.)中.的结论...求△ABC的面积.22(2)3一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.yO图2Q(5,5)P(2,3)yO图111xxBCDFEAS1S2S362BCDGFEA图1ABCD图2ABCDABCDABCD4.(1)如图①两个正方形的边长均为3,求三角形DBF的面积.(2)如图②,正方形ABCD的边长为3,正方形CEFG的边长为1,求三角形DBF的面积.(3)如图③,正方形ABCD的边长为a,正方形CEFG的边长为b,求三角形DBF的面积.从上面计算中你能得到什么结论.5小明想把一个三角形拼接成面积与它相等的矩形.他先进行了如下部分操作,如图1所示:①取△ABC的边AB、AC的中点D、E,联结DE;②过点A作AF⊥DE于点F;(1)请你帮小明完成图1的操作,把△ABC拼接成面积与它相等的矩形.(2)若把一个三角形通过类似的操作拼接成一个与原三角形面积相等的正方形,那么原三角形的一边与这边上的高之间的数量关系是________________.(3)在下面所给的网格中画出符合(2)中条件的三角形,并将其拼接成面积与它相等的正方形.6现场学习题问题背景:在△ABC中,AB、BC、AC三边的长分别为2、13、17,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.ABCDEF(图1)ABC图3图2图1(1)请你将△ABC的面积直接填写在横线上.________思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为2a、25a、26(0)aa,请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积是:.探索创新:(3)若△ABC三边的长分别为224mn、2216mn、222mn(0,,)mnomn,请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为:.图1

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功