第十五章付里叶级数填空题1.设fxxxx()()()000则f(x)的付里叶展开式中bn=();2.xaanxbnxnnn2012(cossin)(0x2)则a0=_______,an=__________,bn=____________3.x=10)sincos(2nnnnxbnxaax则an_______________bn_________________计算题1.求周期函数f(x)=sgn(cosx)的傅里叶级数展开式.2.将函数f(x)=sinax(-x)展成付里叶级数.(a为非整数)3.将函数fxx()22在(,)内展成付里叶级数。4.求fxx()sin4的付里叶级数.(10分)5.设函数f(x)=|x|,x[-,]求f的付里叶(Fourier)级数展开式.6.把函数f(x)=lxlxllxx2,20,展开成正弦级数.7.将fxxaaxa()10212(a0)展成余弦函数的付立叶级数.8.把f(x)=x在(0,2)内展开成正弦级数.证明题1.若函数fx()在02,上单调,an,bn是fx()的付里叶系数,则nan与nbn都有界。(10分)证明题答案1.afxnxdxn()cos()()0202由第二积分中值定理=f(0)cos()cosnxdxfnxdx022=ffnn()()sin02于是naffnffn()()|sin||()()|0202(得4分)又bfxnxdxfnxdxfnxdxn()sin()sin()sin022002=ffnn()()(cos)()02102有nbffnffn()()|cos||()()021202(得8分)于是{}{}nanbnn与都有界(得10分)填空题答案1.()11nn2.aanbnnn0228344,,3.abnnnn0121,()计算题答案1.解:fxfxbn()()0(得2分)a0=1sgn(cos)xdx=20sgn(cos)xdx=0(得3分)an=202[cosnxdx-cos]nxdx2=)2(0)12()1(4knknnk(得6分)fxkxkkk()()cos()4121210(得8分)2.解:fxaxan()sin为奇函数0(得1分)baxnxdxnaxnaxdxn221200sinsin[cos()cos()]=10[sin()sin()]naxnanaxna=21122nanan()sin(得5分)故sinax=211122sin()sinannanxnn3.解:fx()为偶函数),2,1(,0nbn(得2分)axdx02202243()…(得3分)axuxdxxndnxn2222020()cos(sin)=002sin2sin[2nxdxxnnnxx(得4分)=441000nxndnxnxnnxnnxdx(cos)[coscos=()1412nn…(得6分)故f(x)=23412121()cosnnnnx…(得7分)4.解:fxxx()coscos382248(得5分)fx()是偶函数.于是bn=0(得7分)又afxdx00234()(得8分)afxnxdxn2012180()cosnnnn2424,(得9分)于是f(x)的付里叶级数为fxxx()coscos382248(得10分)5.解:将函数f按周期2延拓,因为f在[-,)是偶函数所以bn=0,n=1,2,…(得2分)且a0=120||xdxxdx(得3分)an=120||coscosxnxdxxnxdx(得4分)=2112nn[()]n=1,2,…故|x|~24212121cos()()nxnn(得8分)6.解:把函数f奇延拓到[,]l0上,然后按周期2l再延拓到整个数轴,得到一个奇函数(得2分)于是an=0n=0,1,2,…(得3分)bn=2220022lfxnxldxlxnxldxllxnxldxllll()sinsin()sin22202sin)(2sin2ntdttlntdttl=4222lnnsinn=1,2,…(得7分)故f(x)4121212121lnnxlnn()()sin()(得8分)7.按偶式展开式有bn0(得2分)aadxdxaaa0022210[()]aanxadxnxadxnnnaa2422[cos()cos]sin(得4分)f(x)=4133155(coscoscos)xaxaxa2|2|0aax(得8分)8.为了要把f展开为正弦级数,对f作奇式周期延拓an0n=0,1,2,…(得2分)bxnxdxnnnnn222441021sincos()n=1,2,…(得4分)x=41211nnxnn()sin(得8分)