第十八章四边形练习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十八章四边形练习题1.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.82.下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直且平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形3.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.34.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF5.如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,下列结论不一定正确的是()A.AC=BDB.OB=OCC.∠BCD=∠BDCD.∠ABD=∠ACD6.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为.7.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件____________,使ABCD成为菱形.(只需添加一个即可)8.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.9.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,则CD=.10.如图,□ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.11.如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.12.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.13.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.FEDCBA14.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点(1)求证:△ABM≌△DCM(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=____________时,四边形MENF是正方形(只写结论,不需证明)ABCDMENF15.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.16.如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,廷长BC到E,使得CE=AD,连接DE.(1)求证:BD=DE.(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.答案第十九章四边形练习题1.B解析:∵AE为∠ADB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.2.D解析:对角线相等的四边形可能是等腰梯形、长方形、正方形等,所以A是假命题;对角线互相垂直且平分的四边形可能是正方形、菱形等,所以B是假命题;对角线互相垂直的四边形可能是菱形、正方形等,所以C是假命题;四个角相等的四边形是矩形是真命题.3.D解析:△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°﹣∠ACB﹣∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC,故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.4.D解析:∵EF垂直平分BC,∴BE=EC,BF=CF,∵CF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,∴∠A=∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BD时,无法得出菱形BECF是正方形,故选项D错误,符合题意.5.C解析:A、∵四边形ABCD是等腰梯形,∴AC=BD,故本选项正确;B、∵四边形ABCD是等腰梯形,∴AB=DC,∠ABC=∠DCB,在△ABC和△DCB中,∵ABDCABCDCBBCCB===,∴△ABC≌△DCB(SAS),∴∠ACB=∠DBC,∴OB=OC,故本选项正确;C、∵无法判定BC=BD,∴∠BCD与∠BDC不一定相等,故本选项错误;D、∵∠ABC=∠DCB,∠ACB=∠DBC,∴∠ABD=∠ACD.故本选项正确.6.15解析:∵□ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,即△DOE的周长为15.故答案是:15.7.OA=OC或AD=BC或AD∥BC或AB=BC(答案不唯一)8.(2,4)或(3,4)或(8,4)解析:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE=22PDPE=2254=3,∴OE=OD-DE=5-3=2,∴此时点P坐标为(2,4);(2)如答图②所示,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE=22OPPE=2254=3,∴此时点P坐标为(3,4);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE=22PDPE=2254=3,∴OE=OD+DE=5+3=8,∴此时点P坐标为(8,4).综上所述,点P的坐标为:(2,4)或(3,4)或(8,4).9.32解析:过点D作DE⊥BC于E.∵AD∥BC,∠B=90°,∴四边形ABED是矩形,∴AD=BE=1,∵BC=4,∴CE=BC-BE=3,∵∠C=45°,∴CD=232CE.10.2解析:∵四边形ABCD是平行四边形,BD=2,∴BE=BD=1.如图2,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,则BB′=BE=.又∵BE=DE,B′E⊥BD,∴DB′=BB′=.11.证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D,在△BCF和△CDE中,,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.12.(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,由(1)可知MP=NQ.13.证明:(1)∵E是AD的中点,∴AE=ED.∵AF∥BC,∴∠AFE=∠DBE,∠FAE=∠BDE,∴△AFE≌△DBE.∴AF=DB.∵AD是BC边上的中点,∴DB=DC,AF=DC(2)四边形ADCF是菱形.理由:由(1)知,AF=DC,∵AF∥CD,∴四边形ADCF是平行四边形.又∵AB⊥AC,∴△ABC是直角三角形∵AD是BC边上的中线,∴12ADBCDC.∴平行四边形ADCF是菱形.14.解:(1)因为四边形ABCD是矩形,所以,∠A=∠D=90°,AB=DC,又MA=MD,所以,△ABM≌△DCM(2)四边形MENF是菱形;理由:因为CF=FM,CN=NB,所以,FN∥MB,同理可得:EN∥MC,所以,四边形MENF为平行四边形,又△ABM≌△DCM∴MB=MC,又∵11,22MEMBMFMC∴ME=MF,∴平行四边形MENF是菱形.(3)2:115.(1)证明:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵∠AFB=∠CFE,∴∠AFD=∠CFE,∴∠BAC=∠DAC,∠AFD=∠CFE.(2)证明:∵AB∥CD,∴∠BAC=∠ACD,又∵∠BAC=∠DAC,∴∠CAD=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当EB⊥CD时,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,在△BCF和△DCF中,∴△BCF≌△DCF(SAS),∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.16.(1)证明:∵AD∥BC,CE=AD,∴四边形ACED是平行四边形,∴AC=DE,∵四边形ABCD是等腰梯形,AD∥BC,AB=DC,∴AC=BD,∴BD=DE.(2)解:过点D作DF⊥BC于点F,∵四边形ACED是平行四边形,∴CE=AD=3,AC∥DE,∵AC⊥BD,∴BD⊥DE,∵BD=DE,∴S△BDE=12BD•DE=12BD2=12BE•DF=12(BC+CE)•DF=12(BC+AD)•DF=S梯形ABCD=16,∴BD=42,∴BE=2BD=8,∴DF=BF=EF=12BE=4,∴CF=EF-CE=1,∴AB=CD=22CFDF=17.

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功