中学高中物理竞赛培训教材1第十六讲原子物理原子的核式结构1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm以下。氢原子的玻尔理论1、核式结论模型的局限性通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论:①电子最终将落入核内,这表明原子是一个不稳定的系统;②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。2、玻尔理论的内容:一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。二、原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即=E2-E1三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r和运动初速率v需满足下述关系:,n=1、2……其中m为电子质量,h为普朗克常量,这一条件表明,电子绕核的轨道半径是不连续的,或者说轨道是量子化的,每一可取的轨道对应一个能级。定态假设意味着原子是稳定的系统,跃迁假设解释了原子光谱的离散性,最后由氢原子中电子轨h2hnrmv中学高中物理竞赛培训教材2道量子化条件,可导出氢原子能级和氢原子的光谱结构。氢原子的轨道能量即原子能量,为因圆运动而有由此可得根据轨道量子化条件可得:,n=1,2……因,便有得量子化轨道半径为:,n=1,2……式中已将r改记为rn对应的量子化能量可表述为:,n=1,2……n=1对应基态,基态轨道半径为计算可得:=0.529r1也称为氢原子的玻尔半径基态能量为计算可得:E1=eV。对激发态,有:,n=1,2…n越大,rn越大,En也越大,电子离核无穷远时,对应,因此氢原子的电离能为:电子从高能态En跃迁到低能态Em辐射光子的能量为:rekmvE2221222rekrvmrekE22mrhnv222mvekr2222224hnrmmker22224kmehnrn224222hnemkEn22214kmehrmr1111029.5A242212hemkE6.132112,nEErnrnn0EeVEEEE6.1311电离中学高中物理竞赛培训教材3光子频率为,因此氢原子光谱中离散的谱线波长可表述为:,试求氢原子中的电子从第n轨道迁跃到n-1第轨道时辐射的光波频率,进而证明当n很大时这一频率近似等于电子在第n轨道上的转动频率。辐射的光波频率即为辐射的光子频率,应有将代入可得当n很大时,这一频率近似为电子在第n轨道上的转动频率为:将代入得因此,n很大时电子从n第轨道跃迁到第n-1轨道所辐射的光波频率,近似等于电子在第n轨道上的转动频率,这与经典理论所得结要一致,据此,玻尔认为,经典辐射是量子辐射在时的极限情形。氢原子光谱规律1、巴耳末公式研究原子的结构及其规律的一条重要途径就是对光谱的研究。19世纪末,许多科学家对原子光谱已经做了大量的实验工作。第一个发现氢原子线光谱可组成线系的是瑞士的中学教师巴耳末,他于1885年发现氢原子的线光谱在可见光部分的谱线,可归纳为如下的经验公式mnEEhv)11(221mnhEhEEvmnmn1111)1(22mnEhcrcmn)(11nnEEh224222hnemkEn223422223422)1(1221)1(12nnnhmeknnhmek334224hnmek222nnnnnnrmrmvrUf2hnrmvnn334224hnmekfnn中学高中物理竞赛培训教材4,n=3,4,5,…式中的为波长,R是一个常数,叫做里德伯恒量,实验测得R的值为1.096776107。上面的公式叫做巴耳末公式。当n=3,4,5,6时,用该式计算出来的四条光谱线的波长跟从实验测得的、、、四条谱线的波长符合得很好。氢光谱的这一系列谱线叫做巴耳末系。2、里德伯公式1896年,瑞典的里德伯把氢原子光谱的所有谱线的波长用一个普遍的经验公式表示出来,即n=1,2,3…,,…上式称为里德伯公式。对每一个,上是可构成一个谱线系:,,3,4…莱曼系(紫外区),,4,5…巴耳末系(可见光区),,5,6…帕邢系(红外区),,6,7…布拉开系(远红外区),,7,8…普丰德系(远红外区)以上是氢原子光谱的规律,通过进一步的研究,里德伯等人又证明在其他元素的原子光谱中,光谱线也具有如氢原子光谱相类似的规律性。这种规律性为原子结构理论的建立提供了条件。玻尔理论的局限性:玻尔原子理论满意地解释了氢原子和类氢原子的光谱;从理论上算出了里德伯恒量;但是也有一些缺陷。对于解释具有两个以上电子的比较复杂的原子光谱时却遇到了困难,理论推导出来的结论与实验事实出入很大。此外,对谱线的强度、宽度也无能为力;也不能说明原子是如何组成分子、构成液体个固体的。玻尔理论还存在逻辑上的缺点,他把微观粒子看成是遵守经典力学的质点,同时,又给予它们量子化的观念,失败之处在于偶保留了过多的经典物理理论。到本世纪20年代,薛定谔等物理学家在量子观念的基础上建立了量子力学。彻底摒弃了轨道概念,而代之以几率和电子云概念。例题1:设质子的半径为,求质子的密度。如果在宇宙间有一个恒定的密度等于质子的密度。如不从相对论考虑,假定它表面的“第一宇宙速度”达到光速,试计算它的半径是多少。它表面上的“重力加速度”等于多少?(1mol气体的分子数是个;光速);万有引力常数G取为。只取一位数做近似计算。解:的摩尔质量为2g/mol,分子的质量为221211nR1mHHHH2221111nnR112nn21n31n1n11n22n21n32n31n42n41n52n51n62nm151023106sm/10382211/106kgNm2H2Hkgg262310621062中学高中物理竞赛培训教材5∴质子的质量近似为质子的密度ρ==设该星体表面的第一宇宙速度为v,由万引力定律,得,而∴由于“重力速度”∴【注】万有引力恒量一般取6.67原子核原子核所带电荷为+Ze,Z是整数,叫做原子序数。原子核是由质子和中子组成,两者均称为核子,核子数记为A,质子数记为Z,中子数便为A-Z。原子的元素符号记为X,原子核可表述为,元素的化学性质由质子数Z决定,Z相同N不同的称为同位素。在原子物理中,常采用原子质量单位,一个中性碳原子质量的记作1个原子单位,即lu=。质子质量:中子质量:电子质量:结合能除氢核外,原子核中Z个质子与(A-Z)个中子静质量之和都大于原子核的静质量,其间之差:kg261062315261034/106253194516/102411010641mkg22rmMGrmvrGMv2334rM23434GrrrGv2vGpmGvr4191181031024110621032yGyyGyGMg4/34/23221219114/103102411061034smgG211/10kgmNXAZ121kg271660566.1。um007226.1。umn008665.1。ume000549.0XAZXMxnMmZAZmM中学高中物理竞赛培训教材6称为原子核的质量亏损。式中、分别为质子、中子的静质量。造成质量亏损的原因是核子相互吸引结合成原子核时具有负的能量,这类似于电子与原子核相互吸引力结合成原子时具有负的能量(例如氢原子处于基态时电子轨道能量为-13.6eV)。据相对论质能关系,负能量对应质量亏损。质量亏损折合成的能量:称为原子核的结合能,注意结合能取正值。结合能可理解成为了使原子核分裂成各个质子和中子所需要的外加你量。称为核子的平均结合能。天然放射现象天然放射性元素的原子核,能自发地放出射线的现象,叫天然放射现象。这一发现揭示了原子核结构的复杂性。天然放射现象中有三种射线,它们是:α射线:速度约为光速的1/10的氦核流(),其电离本领很大。β射线:速度约为光速的十分之几的电子流(),其电离本领较弱,贯穿本领较弱。γ射线:波长极短的电磁波,是伴随着α射线、β射线射出的,其电离本领很小,贯穿本领最强。原子核的衰变放射性元素的原子核放出某种粒子后,变成另一种新核的现象,叫做原子核的衰变,衰变过程遵循电荷守恒定律和质量守恒定律。用X表示某种放射性元素,z表示它的核电荷数,m表示它的质量数,Y表示产生的新元素,中衰变规律为:α衰变:通式例如β衰变:通式例如γ衰变:通式(γ射线伴随着α射线、β射线同时放出的。原子核放出γ射线,要引起核的能量发生变化,而电荷数和质量数都不改变)衰变定律和半衰期研究发现,任何放射性物质在单独存在时,都遵守指数衰减规律2McEAEHe24e10HeYzmXzm2424HeThU249023492238eYzmXzm101ePaTh109123490234XzmXzm中学高中物理竞赛培训教材7①这叫衰变定律。式中是t=0时的原子核数目,N(t)是经时间t后还没有衰变的原子核的数目,λ叫衰变常数,对于不同的核素衰变常数λ不同。由上式可得:②式中代表在时间内发生的衰变原子核数目。分母N代表t时刻的原子核总数目。λ表示一个原子核在单位时间内发生衰变的概率。不同的放射性元素具有不同的衰变常数,它是一个反映衰变快慢的物理量,λ越大,衰变越快。半衰期表示放射性元素的原子核有半数发生衰变所需的时间。用T表示,由衰变定律可推得:③半衰期T也是反映衰变快慢的物理量;它是由原子核的内部因素决定的,而跟原子所处的物理状态或化学状态无关;半衰期是对大量原子核衰变的统计规律,不表示某个原子核经过多长时间发生的衰变。由①、③式则可导出衰变定律的另一种形式,即(T为半衰期,t表示衰变的时间,表示衰变前原子核的总量,N表示t后未衰变的原子核数)或(为衰变前放射性物质的质量,M为衰变时间t后剩余的质量)。原子核的组成用人工的方法使原子核发生变化,是研究原子核结构及变化规律的有力武器。确定原子核的组成有赖于质子和中子的发现。1919年,卢瑟福用α粒子轰击氮原子核而发现了质子,这个变化的核反应方程:1932年,查德威克用α粒子轰击铍原子核而发现了中子,这个变化的核反应方程是:通过以上实验事实,从而确定了原子核是由质子和中子组成的,质子和中子统称为核子。某种元素一个原子的原子核中质子与中子的数量关系为:质子数=核电荷数=原子序数中子数=核质量数-质子数teNtN)(0NNdtdN/dNdt2lnTTtNN2100NTtMM