第十章__正交试验设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第十章正交试验设计(I)本章教学内容与要求(1)了解正交试验设计的基本思想,掌握正交表的基本结构和特点。(2)掌握正交试验设计的基本步骤。(3)掌握正交试验结果的直观分析法;理解和掌握正交试验结果的方差分析法。(4)了解SPSS在正交试验结果分析中的应用。(II)教学重点正交试验设计的基本步骤,正交表的直观分析、方差分析。(III)教学难点正交表的选择和表头设计。10.1正交试验设计概述10.1.1正交试验设计方法的基本思想和优点在实际工作中,常需要同时考察3个或3个以上的试验因素,若进行全面试验,则试验的规模很大,往往因试验条件的限制而难以实施。正交试验设计法就是用正交表安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。我国60年代开始使用,70年代得到推广,因其优点突出,日益受到科学工作者的重视,在实践中获得了广泛的应用。下面,我们用具体例子来说明正交试验设计的思想及其特点。[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:A:80-90℃;B:90-150分钟;C:5-7%(提问:影响因素及其水平范围如何确定?)试验设计方法:(1)试验目的:搞清楚因子A、B、C三种因素对产品转化率有什么影响,哪些因素是主要的,哪些因素是次要的,各种因素哪种水平比较好,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。(2)确定因素的水平:在这里,对因子A、B、C,在其试验水平范围内分别选了三个水平来研究;A:Al=80℃,A2=85℃,A3=90℃B:Bl=90分,B2=120分,B3=150分C:Cl=5%,C2=6%,C3=7%因子的水平可以是定量的,也可以是定性的。而定量因子各水平间的距离可以相等,也可以不相等。(3)试制定试验方案。这个三因子三水平的条件试验,通常有三种试验进行方法:2(Ⅰ)全面试验法:取三因子所有水平之间的组合,即AlBlC1,A1BlC2,A1B2C1,……,A3B3C3,共有33=27次试验。这种试验法叫做全面试验法。全面试验的优点是对各因子与指标间的关系剖析得比较清楚。缺点是试验次数太多。特别是当因子数目多,每个因子的水平数目也多时,试验量大得惊人。在实验工作中,往往因试验条件的限制而难以实施。如选六个因子,每个因子取五个水平时,如欲做全面试验,则需56=15625次试验,这实际上是不可能实现的。(Ⅱ)简单对比法:即变化一个因素而固定其他因素,如首先固定B、C于Bl、Cl,使A变化之:↗A1B1C1→A2↘A3(好结果)如得出结果A3实验效果最好,则接下来固定A于A3,C还是Cl,使B变化之:↗B1A3C1→B2(好结果)↘B3得出结果以B2为最好,则最后固定B于B2,A于A3,使C变化之:↗C1A3B2→C2(好结果)↘C3试验结果以C2最好。于是就认为最好的工艺条件是A3B2C2。简单对比法这种方法一般也有一定的效果,最大优点就是试验次数少,但缺点很多。首先这种方法的选点代表性均匀性很差,这种试验方法不全面,所选的工艺条件A3B2C2不一定是27个组合中最好的。其次,用这种方法比较条件好坏时,是把单个的试验数据拿来,进行数值上的简单比较,而试验数据中必然要包含着误差成分,所以单个数据的简单比较不能剔除误差的干扰,必然造成结论的不稳定,试验结果是不可靠的。(Ⅲ)正交设计法:例1的情况选用正交表L9(34)来安排试验,见表10-1。表10-1正交表L9(34)的应用试验号列号1234因素温度/℃压力/(N/m2)加碱量/kg符号ABC11(A1)1(B1)1(C1)121(A1)2(B2)2(C2)231(A1)3(B3)3(C3)3342(A2)1(B1)2(C2)352(A1)2(B2)3(C3)162(A2)3(B3)1(C1)273(A3)1(B1)3(C3)283(A3)2(B2)1(C1)393(A3)3(B3)2(C2)1正交表的特点:所有的正交表与L9(34)正交表一样,都具有下面两个特点:(1)在每一列中,各个不同的数字(即因素的水平)出现的次数相同。在表L9(34)中,每一列有三个水平,水平1、2、3都是各出现3次。(2)表中任意两列并列在一起形成若干个数字对(即两因素的各水平组合),不同水平间的所有组合都出现,且出现的次数也都相同。在表L9(34)中,任意两列并列在一起形成的数字对共有9个:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),每一个数字对各出现1次。这两个特点称为正交性。正是由于正交表具有上述特点,就保证了用正交表安排的试验方案中因素水平是“均衡分散”的,数据点的分布是均匀的。这从图10-1中可以直观地看出。虽然数据点只有9个,却非常均匀地分布在图中的各个平面和各条直线上。与A轴垂直的三个平面,与B轴垂直的三个平面,与C轴垂直的三个平面等9个平面内,每一个平面内都正好含有3个数据点。图中与A、B、C轴平行的27条直线,每一条直线上都正好含有一个数据点。可见,运用正交试验设计方法得出的第三方案,不仅试验的次数少,而且数据点分布的均匀性极好。兼有第一和第二方案的优点。不难理解,对第三方案的全部数据,进行数理统计分析引出的结论的可靠性肯定会远好于第二方案。因素越多,水平数,运用正交试验设计方法,减少试验次数的效益越明显。做一个6因素3水平试验,若用因素水平全面搭配方法,共需的试验次数=36=729次;若用正交表L27(313)来安排,则只需做27次试验。图10-1对应的数据分布图10.1.2正交表使用正交试验设计方法进行试验方案的设计,就必须用到的工具是正交表。常用的正交表见本书的附录9(P271-279)。4一、各列水平数均相同的正交表(可称单一水平正交表)这类正交表名称的写法为Ln(kq),如:各列水平数均为2的常用正交表有:①L4(23);②L8(27);③L12(211);④L16(215);⑤L20(219);⑥L32(231)。各列水平数均为3的常用正交表有:①L9(34)②L27(313)各列水平数均为5的常用正交表有:L25(56)各列水平数均为4的常用正交表有:L16(45)各列水平数均相同的正交表,允许进行三种初等置换:①表中的任意两列之间可以互相置换。②表中的任意两行之间可以互相置换。③同一列中任意两种水平记号之间可以互相置换。经初等置换得到的一切新的正交表与置换之前的原来的正交表是等价的。二、混合水平正交表各列水平数不相同的正交表,叫混合水平正交表,下面就是一个混合水平正交表名称的写法:L8(41×24)2水平列的列数为44水平列的列数为1实验的次数正交表的代号以上写法常简写为L8(4×24)。此混合水平正交表含有1个4水平列,4个2水平列,共有1+4=5列。10.2正交试验设计的基本步骤10.2.1明确试验目的,确定考核指标试验目的就是通过正交试验要解决什么问题。考核指标就是用来衡量试验效果的质量指标。试验指标确定后,应当把测定该指标的标准、方法以及所需用的仪器等确定下来。10.2.2挑因素,选水平根据试验目的挑选对试验指标有影响的因素,选择各因素在试验中变化的各种状态即水平。(因素和水平的数量如何确定?)各因素的水平数可以相等,也可以不等。(对需要重点了解的因素,其水平数可以适当增加。)正交试验法适用于水平能够人为加以控制和调节的可控因素。通常将选好的因素、水平列成因素水平对照表。如P191中的表10-1810.2.3选择合适正交表5总原则:既能容纳所有需要考察的因素,又要使试验量最小。基本原则:1.先看水平数。A)若各因素全是2水平,就选L*(2*)表;若各因素全是三水平,就选L*(3*)表。B)若各因素的水平数不相同,就选择适用的混合水平表。在确定因素的水平数时,主要因素宜多安排几个水平,次要因素可少安排几个水平。2.看试验的要求。A)只考察各因素的主效应,则选择较小的表。每个因素占一列,只要所有因素均能顺序上表即可。B)还需考察交互作用:常规正交表中,有些只能考察主效应而不能考察因素间的交互作用;而有些正交表则能够分析因素间的交互作用。(提问:附录9中哪些正交表可以考察交互作用,而哪些不能?)在正交试验设计中,因素间的交互作用也一律当作一种来看待,即可以安排在正交表的相应列上。它们对试验指标的影响是可以计算分析的。所选正交表的列数要能容纳所有需要考察的主效应和交互效应。选择需要考察的交互作用时,2级以上的高级交互作用因对指标的影响一般都很小,可以忽略,不予考虑。两因素间的1级交互通常只需考察那些作用效果明显的,或试验要求必须要考查的;根据专业知识或研究经验知道没有交互作用或交互作用不大时不必考察。3.在某因素或某交互作用的影响是否确实存在没有把握的情况下,选择L表时常为该选大表还是选小表而犹豫。若条件许可,应尽量选用大表,让影响存在的可能性较大的因素和交互作用各占适当的列。某因素或某交互作用的影响是否真的存在,留到方差分析做显著性检验时再做结论。这样既可以减少试验的工作量,又不致于漏掉重要的信息。4.留一个空白列。为了对试验结果进行方差分析或回归分析,若进行无重复试验时还必须至少留一个空白列,作为“误差”列,在极差分析中可作为“其它因素”列处理。5.要看试验精度的要求。若要求高,则宜取实验次数多的L表。6.若试验费用很昂贵,或试验的经费很有限,或人力和时间都比较紧张,则不宜选实验次数太多的L表。10.2.4进行正交表的表头设计所谓表头设计,就是确定试验所考虑的各种因素和交互作用,在正交表中该放在哪一列的问题。1.只考察主效应的表头设计若试验只考察主效应,不考虑交互作用进,则表头设计可以是任意的。即各种因素可以任意上列。例如:在例10-1中,对L9(34)的表头设计,表6-11所列的各种方案都是可用的。6表10-2L9(34)表头设计方案列号1234方案1ABC空2空ABC3C空AB4BC空A……对试验之初不考虑交互作用却选用较大的正交表,空列较多时,最好仍与有交互作用时一样,按规定进行表头设计。将有交互作用的列先视为空列,待试验结束后再加以分析判定是否存在交互作用。2.考察交互作用的表头设计有考察交互作用时,表头设计则必须严格地按照交互作用表进行配列,各因素不能任意安排。A)表头设计时的重要原则是应“避免混杂”,即不允许各试验因素与1级交互作用的混杂。有时为了减少试验次数,可以允许1级交互作用间的混杂。B)主要因素、重点因素、涉及交互作用较多的因素,应优先安排;次要因素、不涉及交互作用或涉及交互作用较少的因素,可放在后面安排。【例2】试验目的:为了提高花菜种子的产量和质量进行正交试验。考察因素和水平:四因素两水平,根据经验,还需考察浇水次数与喷药次数的交互作用、浇水次数与施肥次数的交互作用。表10-3花菜留种正交试验因素水平表因素水平1水平2浇水次数不干死为原则,只浇1~2次根据生长需水量浇,但不过湿喷药次数发现病害即喷药每半月喷一次施肥次数开花期才施肥抽苔期、开花期、结实期各喷一次进室时间11月1日11月15日解决方案1)四个因素都是两个水平,选择水平数为2的等水平表。2)需要考察的因素有:4个主效应和2个交互效应,选择的正交表至少要6列,留一列空白列。故选择L8(27)表。3)浇水次数涉及的交互作用最多,作为A因素优先安排;喷药次数为B因素;施肥次数为C因素;进室时间不涉及交互作用,作为D因素最后安排。4)表头设计的重点是搞清各个交互作用该放在哪一列。方法之一:使用P271附录9正交表L8(27)后面的“L8(27)二列间交互作用表”。L8(27)二列间交互作用表7列号1234567(1)(2)(3)(4)(5)(6)(7)(1)3(2)21(3)567(4)4761(5)74523(6)654321(7)思路为:①先将因素A、B分别放在第1、2列。②第1列和第2列的交互作用A×B该放在哪一列?在L8(27)二列间交互作用表中,从最左边的列号“(1)”向

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功