第1页共13页高三数学思想、方法、策略专题—新型问题解题策略一.知识探究:1.探索型问题常见的探索性问题,就其命题特点考虑,可分为归纳型、题设开放型、结论开放型、题设和结论均开放型以及解题方法的开放型几类问题;(1)结论开放型探索性问题的特点是给出一定的条件而未给出结论,要求在给定的前提条件下,探索结论的多样性,然后通过推理证明确定结论;(2)题设开放型探索性问题的特点是给出结论,不给出条件或条件残缺,需在给定结论的前提下,探索结论成立的条件,但满足结论成立的条件往往不唯一,答案与已知条件对整个问题而言只要是充分的、相容的、独立的,就视为正确的;(3)全开放型,题设、结论都不确定或不太明确的开放型探索性问题,与此同时解决问题的方法也具有开放型的探索性问题,需要我们进行比较全面深入的探索,才能研究出解决问题的办法来。解探索性问题应注意三个基本问题:认真审题,确定目标;深刻理解题意;开阔思路,发散思维,运用观察、比较、类比、联想、猜想等带有非逻辑思维成分的合理推理,以便为逻辑思维定向。方向确定后,又需借助逻辑思维,进行严格推理论证,这两种推理的灵活运用,两种思维成分的交织融合,便是处理这类问题的基本思想方法和解题策略。解决探索性问题,对观察、联想、类比、猜测、抽象、概括诸方面有较高要求,高考题中一般解这类问题有如下方法:(1)直接法:直接从给出的结论入手,寻求成立的充分条件;直接从给出的条件入手,寻求结论;假设结论存在(或不存在),然后经过推理求得符合条件的结果(或导出矛盾)等;(2)观察——猜测——证明(3)特殊—一般—特殊其解法是先根据若干个特殊值,得到一般的结论,然后再用特殊值解决问题;(4)联想类比(5)赋值推断(6)几何意义法几何意义法就是利用探索性问题的题设所给的数或式的几何意义去探索结论,由于数学语言的抽象性,有些探索性问题的题设表述不易理解,在解题时若能积极地考虑题设中数或式的几何意义所体现的内在联系,巧妙地转换思维角度,将有利于问题的解决;2.创新题型根据现行的教学大纲和国家数学课程标准的要求,结合中学数学教材的内容及我国的经济发展的要求,在实际问题中侧重如下几种模型:(1)社会经济模型第2页共13页现值、终值的计算及应用(计息、分期付款、贴现等),投资收益,折旧,库存,经济图表的运用;(2)拟合模型数据的利用、分析与预测(线形回归、曲线拟合)等问题;(3)优化模型科学规划,劳动力利用,工期效益,合理施肥,最值问题,工程网络,物资调用等问题;(4)概率统计模型彩票与模型,市场统计,评估预测,风险决策,抽样估计等问题;(5)几何应用模型工厂选址,展开、折叠,视图,容器设计,空间量的计算,轨迹的应用等;(6)边缘学科模型与理、化、生、地、医等相关方面的问题。二.命题趋势从最近几年来高考中探索性问题和创新题型逐年攀升的趋势,可预测探索性问题仍将是高考命题“孜孜以求的目标”。我们认为进行探索性问题的训练,是数学教育走出困境的一个好办法。在第二轮复习的过程中要重视对探索性问题的专题训练,题型要多样化,题目涉及的知识覆盖面尽量广一些,难度由浅入深;预测高考探索性问题重点出在函数、数列、不等式、立体几何和解析几何,今年高考这些内容还是出探索性问题的热点(特别是解答题)应加强对这些内容的研究;创新题型多出现与经济、生活密切相关的数学问题相关的问题有关,题目新颖,数学知识并不复杂。三.例题点评题型1:探索问题之直接法例1.如图,在直四棱柱A1B1C1D1—ABCD中,当底面四边形ABCD满足条件__________时,有A1C⊥B1D1(注:填上你认为正确的条件即可,不必考虑所有可能的情况)分析:本题是条件探索型试题,即寻找结论A1C⊥B1D1成立的充分条件,由AA1⊥平面A1C1以及A1C⊥B1D1(平面A1C1的一条斜线A1C与面内的一条直线B1D1互相垂直),容易联想到三垂线定理及其逆定理。因此,欲使A1C⊥B1D1,只需B1D1与CA1在平面A1C1上的射影垂直即可。显然,CA1在平面A1C1上的射影为A1C1,故当B1D1⊥A1C1时,有A1C⊥B1D1,又由于直四棱柱的上、下底面互相平行,从而B1D1∥BD,A1C1∥AC。因此,当BD⊥AC时,有A1C⊥B1D1。由于本题是要探求使A1C⊥B1D1成立的充分条件,故当四边形ABCD为菱形或正方形时,依然有BD⊥AC,从而有A1C⊥B1D1,故可以填:①AC⊥BD或②四边形ABCD为菱形,或③四边形ABCD为正方形中的任一个条件即可。点评:AC⊥BD是结论A1C⊥B1D1成立的充要条件,而所填的ABCD是正方形或菱形则是使结论A1C⊥B1D1成立的充分而不必要的条件。本例中,满足题意的充分条件不唯一,具有开放性特点,这类试题重在考查基础知识的灵活运用以及归纳探索能力。例2.(2000年全国高考试题)如图,E、F分别为正方体的面ADD1A1和面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是_____________(要求把可能第3页共13页的图形的序号都填上)分析:本题为结论探索型的试题,要求有一定的空间想象能力。解析:由于正方体的6个面可分为互为平行的三对,而四边形BFD1E的在互为平行的平面上的射影相同,因此可把问题分为三类:a:在上、下两面上的射影为图②;b:在前、后两面上的射影为图②;c:在左、右两面上的射影为图③.综上可知,在正方体各面上的射影是图②或图③。点评:这也是一道结论探索型问题,结论不唯一,应从题设出发,通过分类以简化思维,再利用射影的概念,得到正确的结论。例3.已知函数1)(2axcbxxf(a,c∈R,a>0,b是自然数)是奇函数,f(x)有最大值21,且f(1)>52.(1)求函数f(x)的解析式;(2)是否存在直线l与y=f(x)的图象交于P、Q两点,并且使得P、Q两点关于点(1,0)对称,若存在,求出直线l的方程,若不存在,说明理由.分析:本题考查待定系数法求函数解析式、最值问题、直线方程及综合分析问题的能力.解析:(1)∵f(x)是奇函数,∴f(–x)=-f(x),即1122axcbxaxcbx,∴-bx+c=-bx–c,∴c=0,∴f(x)=12axbx.由a>0,b是自然数得当x≤0时,f(x)≤0,第4页共13页当x>0时,f(x)>0,∴f(x)的最大值在x>0时取得.∴x>0时,22111)(babxxbaxf当且仅当bxxba1即ax1时,f(x)有最大值21212ba∴2ba=1,∴a=b2①又f(1)>52,∴1ab>52,∴5b>2a+2②把①代入②得2b2–5b+2<0解得21<b<2,又b∈N,∴b=1,a=1,∴f(x)=12xx(2)设存在直线l与y=f(x)的图象交于P、Q两点,且P、Q关于点(1,0)对称,P(x0,y0)则Q(2–x0,–y0),∴020002001)2(21yxxyxx,消去y0,得x02–2x0–1=0解之,得x0=1±2,∴P点坐标为(42,21)或(42,21),进而相应Q点坐标为Q(42,21)或Q(42,21),过P、Q的直线l的方程:x-4y-1=0即为所求。点评:充分利用题设条件是解题关键.本题是存在型探索题目,注意在假设存在的条件下推理创新,若由此导出矛盾,则否定假设,否则,给出肯定的结论,并加以论证。题型2:探索问题“观察——猜测——证明”例4.观察sin220°+cos250°+sin20°cos50°=43,sin215°+cos245°+sin15°cos45°=43,写出一个与以上两式规律相同的一个等式.答案:sin2α+cos2(α+30°)+sinαcos(α+30°)=43;例5.(2003高考上海卷)已知数列}{na(n为正整数)是首项是a1,公比为q的等比数列。(1)求和:;,334233132031223122021CaCaCaCaCaCaCa第5页共13页(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.(3)设q≠1,Sn是等比数列}{na的前n项和,求:nnnnnnnnCSCSCSCSCS134231201)1(,解析:(1).)1(33,)1(231312111334233132031212111223122021qaqaqaqaaCaCaCaCaqaqaqaaCaCaCa(2)归纳概括的结论为:若数列}{na是首项为a1,公比为q的等比数列,则:nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnqaCqCqCqqCCaCqaCqaCqaqCaCaCaCaCaCaCanqaCaCaCaCaCa)1(])1([)1()1(:.,)1()1(13322101133122111011342312011134231201证明为正整数(3)因为,111qqaaSnn.)1(1])1([1])1([11)1(111)1(133221013210111123111211011134231201nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnqqqaCqCqCqqCCqqaCCCCCqaCqqaaCqqaaCqqaaCqqaaCSCSCSCSCS所以例6.由下列各式:第6页共13页112111123111111312345672111122315你能得出怎样的结论,并进行证明。分析:对所给各式进行比较观察,注意各不等式左边的最后一项的分母特点:1=21-1,3=22-1,7=23-1,15=24-1,…,一般的有2n-1,对应各式右端为一般也有2n。解析:归纳得一般结论*1111()23212nnnN证明:当n=1时,结论显然成立.当n≥2时,3333111111111111()()2321244222211111111()()2222222222nnnnnnnnnn故结论得证。题型3:探究问题之“特殊—一般—特殊”例7.设二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且f(x)≥x;②当x∈(0,2)时,f(x)≤2)21(x;③f(x)在R上的最小值为0。求最大值m(m1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x分析:本题先根据题设求出函数f(x)解析式,然后假设t存在,取x=1得t的范围,再令x=m求出m的取值范围,进而根据t的范围求出m的最大值。解法一:∵f(x-4)=f(2-x),∴函数的图象关于x=-1对称∴12ab即b=2a由③知当时,y=0,即;由①得f(1)≥1,由②得f(1)≤1。∴f(1)=1,即a+b+c=1,第7页共13页又,∴a=41、b=21、c=41,∴f(x)=4121412xx,假设存在t∈R,只要x∈[1,m],就有f(x+t)≤x,取x=1时,有f(t+1)≤141(t+1)2+21(t+1)+41≤1,对固定的t∈[-4,0],取x=m,有:41(t+m)2+21(t+m)+41≤mm22+2t+1)≤0,tt41≤m≤tt41∴m≤tt41≤)4(4)4(1=9,当t=-4时,对任意的x∈[1,9],恒有=41(x241,∴m的最大值为9。解法二:∵f(x-4)=f(2-x),∴函数的图象关于x=-1对称,∴12ab,b=2a。由③知当时,y=0,即;由①得f(1)≥1,由②得f(1)≤1。∴f(1)=1,即a+b+c=1,又∴a=41b=21c=41∴f(x)=4121412xx=41(x+1)