1白光LED在照明中的技术探讨LED就是lightemittingdiode,发光二极管的英文缩写,LED光源具有单色性好、寿命长、抗震性好、响应时间短、高效率、低能耗、体积小、重量轻等特点,被广泛地应用于大屏幕、信号灯和景观照明中。对于一般照明而言,人们更需要白色的光源。目前我国LED在照明领域应用的困难是LED白光光效不高(每瓦只有20流明左右),功率不大(几十毫瓦至一瓦)、价格贵。但是白光LED的发展前景看好,发光效率将达到1001m/w,单颗的输出功率达到10W,大功率、高亮度LED集成封装技术的研究无疑是LED最终走入照明领域的关键。1白光LED的基本原理表1白光LED的三种典型实现方法abc蓝光LED+黄色荧光粉紫外线LED+红绿蓝三色荧光粉红绿蓝三芯片原理基座蓝:InGaN紫外:InGaN红,绿:AlInGaP(绿),蓝:InGaN荧光粉黄色黄绿色---显色指数HID:65809090光效1m/W3030---2问题蓝光和红光比率变化造成颜色的改变紫外光对材料的老化问题红绿蓝光比率的改变造成颜色的改变类自然光谱白光LED有几种不同的工作原理,表1展示了3种典型的实现方法,这三种技术在照明领域已实现产业化,并将是未来的主流发展方向。表1a中的是比较成熟且已商业化的蓝光芯片+黄色荧光粉来获得白光,这种白光成本最低,但是蓝光晶粒发光波长的偏移、强度的变化及荧光粉涂布厚度的改变均会影响白光的均匀度,而且光谱呈带状较窄,色彩不全,色温偏高,显色性偏低,灯光对眼睛不柔和不协调。人眼经过进化最适应的是太阳光,白炽灯的连续光谱是最好的,色温为2500K,显色指数为100。所以这种白光还需要改进,比如加多发光过程来改善光谱,使之连续且足够宽。表1b中的是紫外光或紫光芯片+红、蓝、绿三基色荧光粉来获得白光,发光原理类似于日光灯,该方法显色性更好,而且UV-LED不参与白光的配色,所以UV-LED波长与强度的波动对于配出的白光而言不会特别地敏感,并可由各色荧光粉的选择和配比,调制出可接受色温及演色性的白光。但同样存在所用荧光粉有效转化效率低,尤其是红色荧光粉的效率需要大幅度提高的问题。这类荧光粉发光稳定性差、光衰较大、配合荧光粉紫外光波长的选择、UV-LED制作的难度及抗UV封装材料的开发也是需要克服的困难。表1c中的是利用三基色原理将RGB三种超高亮度LED混合成白光,该方法的优点是不需经过荧光粉的转换而直接配出白光,除了可避免荧光粉转换的损失而得到较佳的发光效率外,更可以分开控制红、绿、蓝光LED的发光强度,达成全彩的变色效果(可变色温),并可由LED波长及强度的选择得到较佳的演色性。但这种办法的问题是绿光的转换效率低,混光困难,驱动电路设计复杂。2白光LED在照明中的技术困难3对于白光LED的开发课题来说,不仅是亮度的提高,包括均一性、演色性、长寿命化等等多个方面也都是需要强化与努力的,在过去,模拟白光的LED由于无法解决颜色的问题,所以产业界不断地提出各式各样的技术和材料,然而在白光的这个领域中成为研发焦点的,并非是LED芯片本身的效能,而是包括模块技术、封装技术,以及荧光粉和封装材料等等的问题才是重点。2.1提高光输出功率是重要课题白光LED的制造技术,从以往的蓝色LED和黄色YAG荧光粉组合成仿真白光,朝向各种不同的方向不断努力发展。以前的制造方法导致LED发光的均一性低、封装材料寿命短、更没有可耐久使用的LED特色、红色(R)及绿色(G)的成分少使得演色性下降等问题。此外对于白光LED的应用来说,不仅仅是一般照明用灯,应用包括已经扩展到移动电话用的背光、键盘背光、照相机的闪光灯、LCD-TV背光、汽车用的头灯,医疗用灯等等,所以随着应用范围的日益广泛,生产出适合不同领域的白光技术,就变得相当重要也是大家所关心的发展趋势。这些年来,白光LED的发光效率本身确实有所上升。根据LED照明推进协会(JLEDS)的蓝图,白光LED发光效率将有机会达到100lm/W,所以相当多的业者依照这样的期望加速开发出高于蓝图规格的新一代白光LED产品出来。以目前的制程与材料技术来看,白光LED的基板材料已经朝向采用GaN材料,来代替蓝宝石或SiC来做为芯片,期望藉此能够大幅度的提升内部量子效率,因为注入电子数相对应放出光子数的外部量子效率,是由内部量子效率和光的输出功率的乘积所决定,在材料特性的关系下,因此产业界都对于GaN基板抱有很大的期待。不过虽然GaN材料具有高度的内部量子效率的特性,但是由于GaN基板的高成本关系,使得成本成为大量采用GaN材料做为基板的最大瓶颈,因此普及化的可能性在目前来说依旧不明朗。与此同时,另一方面由于期望藉由封装技术的4进步来提高外部量子效率,LED业者正全力提高光的输出功率,所以如何降低LED芯片的光损失,就成了努力的目标,不断的对封装技术提出更先进的期望要求。2.2LED芯片和封装的技术都需要再提升为了达到更高的光输出效率,利用基板的蓝宝石凹凸结构、覆晶的封装来提高光的输出效率正被业界积极开发中,而包括LED芯片表面的构造和光子晶体构造也有多家业者投入研究。例如,OSRAMOPTOSemiconductors所开发的「ThinGaN」LED,是在InGaN层上形成金属膜和导电载子(Carrier)的蓝宝石基板,利用金属膜所产生的镜面作用,激发出更多的光得以输出,因此根据OSRAM的推估,利用这样的方式下,LED芯片的输出功率被提高到75%。虽然这样的制程可以改善LED芯片输出功率,但是如果在封装阶段,因为设计或采用材料不良而造成光损失增加的话,那就辜负了前段制程所做的努力。日本OMROM则是开发出新一代的封装技术制程,利用平面光源的结构来大幅度的提升外部量子效率,进而增加整体LED的光输出量。OMROM是利用透镜光学构和反射光学结构来进行组合,让芯片所产生的光,透过引导至被称为「DoubleReflection光学结构」的方式,使得炮弹式LED经常因为广角造成的光损失可以藉由这个机制向外输出。OMROM更在结构表面的网眼上,进行2层反射镜构造的加工,让光行进的路线能更进一步得到提升,而获得更高的光输出效果。一般的白光LED是在陶瓷封装等的中间装配LED芯片,并且在LED芯片的周围灌入混合荧光粉的树脂,混合树脂的目的是让荧光粉的间隙被填满,并且让LED芯片所发出的热,被散热鳍片(HeatSink)和线架(LeadFrame)等吸收,让封装内部不至于过热。这是因为用于封装材料的环氧树脂抗热性较差,往往在LED芯片本身的寿命耗尽之前就出现变色的情况,因此需要依靠散热结构的提高,使得LED芯片流过更多的电流,来增加光输出的可能。目前已经有业者开始研究采用硅材料的可能性,因为硅5材料的耐热性更高,即使在150∼180度的情况下也不会出现变色,所以正逐步代替环氧树脂用于LED的封装材料,采用硅材料的特色不仅如此,还包括400nm的短波长光线都不会被材料吸收,这对于利用紫外光LED搭配RGB荧光粉来达到散发白光的产品,是相当适合的。除了用于封装材料外,硅材料也可作为透镜、透镜固定接着剂、散热材料等等使用,对于不同材质的硅材料可以针对不同的需求来使用。信息化社会的到来促进了现代信息技术的发展,随着LED材料生产技术和工艺的提升,白光LED照明系统以其光源舒适、亮度高、寿命长、工作稳定、低压电源、耗能少、适用性强、稳定性高、响应时间短等特点成为照明的主流产品,并在社会经济的许多领域到得到广泛应用,相信LED事业会在今后的道路上走的更远,造福于世界。