第四章多元线性回归模型在一元线性回归模型中,解释变量只有一个。但在实际问题中,影响因变量的变量可能不止一个,比如根据经济学理论,人们对某种商品的需求不仅受该商品市场价格的影响,而且受其它商品价格以及人们可支配收入水平的制约;影响劳动力劳动供给意愿(用劳动参与率度量)的因素不仅包括经济形势(用失业率度量),而且包括劳动实际工资;根据凯恩斯的流动性偏好理论,影响人们货币需求的因素不仅包括人们的收入水平,而且包括利率水平等。当解释变量的个数由一个扩展到两个或两个以上时,一元线性回归模型就扩展为多元线性回归模型。本章在理论分析中以二元线性回归模型为例进行。一、预备知识(一)相关概念对于一个三变量总体,若由基础理论,变量21,xx和变量y之间存在因果关系,或21,xx的变异可用来解释y的变异。为检验变量21,xx和变量y之间因果关系是否存在、度量变量21,xx对变量y影响的强弱与显著性、以及利用解释变量21,xx去预测因变量y,引入多元回归分析这一工具。将给定iixx21,条件下iy的均值iiiiixxxxyE2211021),|((4.1)定义为总体回归函数(PopulationRegressionFunction,PRF)。定义),|(21iiiixxyEy为误差项(errorterm),记为i,即),|(21iiiiixxyEy,这样iiiiixxyEy),|(21,或iiiixxy22110(4.2)(4.2)式称为总体回归模型或者随机总体回归函数。其中,21,xx称为解释变量(explanatoryvariable)或自变量(independentvariable);y称为被解释变量(explainedvariable)或因变量(dependentvariable);误差项解释了因变量的变动中不能完全被自变量所解释的部分。在总体回归模型(4.2)中参数210,,是未知的,i是不可观察的,统计计量分析的目标之一就是估计模型的未知参数。给定一组随机样本nixxyiii,,2,1),,,(21,对(4.1)式进行估计,若21021,,),,|(iiixxyE的估计量分别记为^2^1^0^,,,iy,则定义(4.3)式为样本回归函数iiixxy2^21^1^0^(ni,,2,1)(4.3)注意,样本回归函数随着样本的不同而不同,也就是说^2^1^0,,是随机变量,它们的随机性是由于iy的随机性(同一组),(21iixx可能对应不同的iy)、21,xx各自的变异、以及21,xx之间的相关性共同引起的。定义^iiyy为残差项(residualterm),记为ie,即^iiiyye,这样iiieyy^,或iiiiexxy2^21^1^0^(ni,,2,1)(4.4)(4.4)式称为样本回归模型或者随机样本回归函数。样本回归模型中残差项ie可视为总体回归模型中误差项i的估计量。(二)多元线性回归模型的矩阵表示多元线性回归模型的参数估计比一元线性回归模型要复杂得多,为了便于计算和分析,便于将结果由三变量总体推广到一般的多变量总体,引入矩阵这一工具简化计算和分析。设nixxyiii,,2,1),,,(21是取自总体的一组随机样本。在该组样本下,总体回归模型(4.2)式可以写成方程组的形式121211101xxy222212102xxynnnnxxy22110利用矩阵运算,可表示为nnnnxxxxxxyyy21210212212211121111(4.5)记nyyyy21,nnxxxxxxX2122122111111,310,n21则在该组样本下,总体回归模型的矩阵表示为Xy(4.6)记^2^1^0^,neeee21则样本回归模型的矩阵表示为eXy^(4.7)(三)模型假定假定1回归模型是参数线性的,并且是设定正确的。假定2随机误差项与解释变量不相关。即0),cov(ijix,2,1j。如果解释变量是非随机的,则该假设自动满足。假定3零均值假定。即0)(iE,ni,,2,1假定4同方差假定。即2)var(i,ni,,2,1假定5无自相关假定。即两个误差项之间不相关0),cov(jiji,ni,,2,1,nj,,2,1假定6解释变量1x与2x之间不存在完全共线性,即两个解释变量之间无确切的的线性关系。假定7正态性假定。即i~),0(2N,ni,,2,1(四)参数估计与估计量的分布系数向量的OLS估计为yXXXTT1^)((4.8)其中,TX为X的转置矩阵。在随机误差项服从正态分布的假定下,系数向量的估计量也服从正态分布,即^~))(,(12XXNT(4.9)记1)(XXCT的第j个主对角元素为jjc,则^j~),(2jjjcN(4.10)有了系数估计量的分布,就可以对总体参数做假设检验。与双变量总体相同,总体误差i是不可观察的,因而其方差2是未知的。若用2的无偏估计量^2代替2,则OLS估计量服从自由度为3n的t分布,而不是正态分布,即)(^^jjjse~)3(nt(4.11)其中,jjjcse^2^)(,32^2nei。(五)预测原理回归分析的目的之一是利用回归模型预测因变量。假设三变量总体的回归模型为(4.2),即iiiixxy22110(4.2)在一组随机样本nixxyiii,,2,1),,,(21下,利用OLS求得样本回归函数为(4.3)iiiixxy2^21^1^0^(ni,,2,1)(4.3)给定样本外一点Tfffxxx),,1(21,则因变量fy的点预测为fffxxy2^21^1^0^(4.12)点预测^fy的标准误为fTTffxXXxyse1^^)(1)((4.13)因变量fy的置信度为1的区间预测为[)()3(^2^ffysenty,)()3(^2^ffysenty](4.14)二、案例[案例1]Woody餐馆的选址分析Woody餐馆是一家价位适中、24小时营业的家庭连锁店,公司邀请你决策下一家连锁店的选址问题。你决定建立一个回归模型来解释每一家连锁餐馆的毛销售额Y(thegrosssalesvolume),通过文献的阅读,你认为以下变量对毛销售额的影响较大,N=竞争变量:餐馆位置半径2里以内市场直接竞争者的数量;P=人口:餐馆位置半径3里以内人口的数量;I=收入:餐馆位置半径3里以内家庭平均收入。并且通过调研,你获得了33家Woody餐馆连锁店的数据。[案例2]经济形势和实际工资对人们工作意愿的影响在第三章,我们根据劳动经济学理论,分析了经济形势对人们工作意愿的影响存在两种效应:受挫工人效应和增加工人效应;并且利用1980-2002年的数据实证了受挫工人效应占主导地位。但根据劳动经济学理论,影响人们工作意愿的因素,除了经济形势以外,还有实际的工资水平。从理论上说,实际工资增加对劳动供给具有两种效应:替代效应与收入效应。替代效应趋于使劳动供给增加,而收入效应则趋于使劳动供给降低,两种效应的相对影响取决于家庭的偏好(参考文献[4],p49)。本案例考察实际工资对人们工作意愿是否有影响,以及在有影响的情况下,那种效应占优。数据见表3.1。三、实验目的[案例1]Woody餐馆的选址分析1、绘制Y对N、P、I的散点图,并在散点图中附加回归线。2、建立Y对N、P、I的线性回归模型,并定性分析解释变量N、P、I对Y的影响。3、利用样本数据及OLS法对回归模型进行估计,并报告回归结果。4、观察回归系数的显著性和方程的显著性,并解释回归系数的含义。[案例2]经济形势和实际工资对人们工作意愿的影响1、绘制clfpr对ahe82的散点图,并附回归线,观察城市劳动参与率与实际工资之间的线性关系。2、建立clfpr对ahe82的一元线性回归模型,利用1980-2002年的数据估计模型,并观察回归系数的显著性和方程的显著性。3、同时考虑经济形势与实际工资对人们工作意愿的影响,建立二元线性回归模型,利用1980-2002年的数据估计模型,观察回归系数的显著性和方程的显著性,并解释回归系数的经济含义。4、对上面(2)与(3)中估计结果的差别进行解释。5、模型的选择问题,在以下三个模型之间,哪个模型更好呢?tttcunrclfpr10(Ⅰ)tttaheclfpr8210(Ⅱ)ttttcunraheclfpr21082(Ⅲ)四、实验原理五、实验步骤[案例1]Woody餐馆的选址分析80,000100,000120,000140,000160,000180,0000246810NY80,000100,000120,000140,000160,000180,0000100,000200,000300,000PY80,000100,000120,000140,000160,000180,00010,00020,00030,00040,000IY图4-1Y对N、P、I的散点图1、打开Eviews工作文件Woody.wfl,按住Ctrl键,点击工作文件目录中的序列Y、N、P、I图标,点击鼠标右键,点击Open/asGroup,出现包含序列Y、N、P、I的组对象窗口。点击组对象窗口工具栏的View按钮,选择Graph,在Specifi选项中选择Scatter,在Fitlines中选择RegressionLine,在Multiple中选择Multiplegraphs-Firstvs.All,设定完毕后点击确定按钮,则出现Y对N、P、I的三张散点图,点击鼠标右键,选择Copy,将散点图复制到Word文档中,如图4-1所示。2、Y对N、P、I的线性回归模型为iiiiiIPNY3210(4.15)一般来说,人口越多,餐馆的毛销售额越大;人们的收入水平越高,餐馆的毛销售额越大;竞争者的数量越多,餐馆的毛销售额越低。即P和I对Y有正的影响,N对Y有负的影响,从而32,的预期符号为正,1的预期符号为负。图4-1散点图中回归线的斜率与理论的预期是一致的。3、在文件窗口点击object/newobject,在出现的对象类型中选择equation,在对象名中填写eq1,点击OK,出现对话框图4.2图4.2回归方程的设定在估计方法中选择最小二乘法,样本范围填写1到30。设定完毕后点击确定。出现图4.3图4.3方程估计的输出根据图4.3,报告估计结果如下Y=102192.4-9074.67*N+0.35*P+1.29*I(2052.67)(0.073)(0.54)t=-4.424.872.372R=0.584、从估计输出结果可知,回归系数的符号方向(正、负)和大小均与理论分析一致,t统计量的值显示也在0.05的显著性水平下显著(这一点也可以从边际概率值观察到),F统计量的值为15.64(相应的概率值为0.000003),表明三个解释变量对被解释变量联合显著。多元回归系数的含义为,当其他变量(控制变量)不变时,该变量对因变量的边际影响。对于本例各系数的含义为,收入增加一个单位会使餐馆的销售收入增加1.29个单位;人口增加一个单位会使餐馆的销售收入增加0.35个单位;竞争者的数量增加一个单位将使餐馆的销售数量减少9074.67个单位。[案例2]经济形势和实际工资对人们工作意愿的影响在以下操作中,假设包含clfpr、ahe82和cunr三个序列的Evie